Nondegeneracy Concepts for Zeros of Piecewise Smooth Functions

A zero of a piecewise smooth function f is said to be nondegenerate if the function is Frechet differentiable at that point. Using this concept, we describe the usual nondegeneracy notions in the settings of nonlinear vertical, horizontal, mixed complementarity problems and the variational inequality problem corresponding to a polyhedral convex set. Some properties of nondegenerate zeros of piecewise affine functions are described. We generalize a recent result of Ferris and Pang on the existence of a nondegenerate solution of an affine variational inequality problem which itself is a generalization of a theorem of Goldman and Tucker.

[1]  R. Sznajder,et al.  Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems , 1995 .

[2]  S. M. Robinson Local structure of feasible sets in nonlinear programming , 1983 .

[3]  S. M. Robinson Local Structure of Feasible Sets in Nonlinear Programming - Part II. Nondegeneracy , 1984 .

[4]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[5]  J. J. Moré,et al.  On the identification of active constraints , 1988 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  A. Tucker 1 . Dual Systems of Homogeneous Linear Relations , 1957 .

[8]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[9]  M. Ferris,et al.  Nondegenerate Solutions and Related Concepts in Affine Variational Inequalities , 1996 .

[10]  M. Seetharama Gowda,et al.  Applications of Degree Theory to Linear Complementarity Problems , 1993, Math. Oper. Res..

[11]  Cu Duong Ha Stability of the linear complementarity problem at a solution point , 1985, Math. Program..

[12]  Olvi L. Mangasarian,et al.  Error bounds for nondegenerate monotone linear complementarity problems , 1990, Math. Program..

[13]  Stef Tijs,et al.  Robustness and nondegenerateness for linear complementarity problems , 1987, Math. Program..

[14]  Michael C. Ferris,et al.  Minimum principle sufficiency , 1992, Math. Program..

[15]  Jen-Chih Yao,et al.  On the generalized complementarity problem , 1994, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[16]  J. Pang,et al.  On the Boundedness and Stability of Solutions to the Affine Variational Inequality Problem , 1994 .

[17]  Katta G. Murty,et al.  On the number of solutions to the complementarity problem and spanning properties of complementary cones , 1972 .

[18]  Herbert E. Scarf,et al.  The Solution of Systems of Piecewise Linear Equations , 1976, Math. Oper. Res..

[19]  U. Rothblum,et al.  Relationships of properties of piecewise affine maps over ordered fields , 1990 .

[20]  Yinyu Ye,et al.  Convergence behavior of interior-point algorithms , 1993, Math. Program..

[21]  J. Pang,et al.  Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory , 1994 .

[22]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[23]  S. Wright,et al.  Local convergence of interior-point algorithms for degenerate LCP , 1994 .

[24]  S. Karamardian Generalized complementarity problem , 1970 .

[25]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[26]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[27]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[28]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[29]  S. M. Robinson Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .

[30]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[31]  R. Sznajder,et al.  The Generalized Order Linear Complementarity Problem , 1994, SIAM J. Matrix Anal. Appl..

[32]  Anthony V. Fiacco,et al.  Degeneracy in NLP and the development of results motivated by its presence , 1993, Ann. Oper. Res..

[33]  Stephen J. Wright,et al.  Local convergence of interior-point algorithms for degenerate monotone LCP , 1994, Comput. Optim. Appl..

[34]  J. Dunn On the convergence of projected gradient processes to singular critical points , 1987 .

[35]  A. J. Goldman,et al.  4. Theory of Linear Programming , 1957 .