HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell

The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.

[1]  G. Melikyan,et al.  HIV-1 Uncoating and Nuclear Import Precede the Completion of Reverse Transcription in Cell Lines and in Primary Macrophages , 2020, Viruses.

[2]  Alexander J. Bryer,et al.  Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR , 2020, Nature Structural & Molecular Biology.

[3]  A. Engelman,et al.  Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A , 2020, Nature Structural & Molecular Biology.

[4]  M. Beck,et al.  Cone-shaped HIV-1 capsids are transported through intact nuclear pores , 2020, Cell.

[5]  E. Campbell,et al.  Nuclear pore blockade reveals HIV-1 completes reverse transcription and uncoating in the nucleus , 2020, Nature Microbiology.

[6]  C. Zimmer,et al.  Clustering and reverse transcription of HIV‐1 genomes in nuclear niches of macrophages , 2020, bioRxiv.

[7]  F. Mueller,et al.  Remodeling of the Core Leads HIV-1 Preintegration Complex into the Nucleus of Human Lymphocytes , 2020, Journal of Virology.

[8]  A. Selyutina,et al.  Nuclear Import of the HIV-1 Core Precedes Reverse Transcription and Uncoating , 2020, bioRxiv.

[9]  G. Voth,et al.  TRIM5α self-assembly and compartmentalization of the HIV-1 viral capsid , 2020, Nature Communications.

[10]  K. Nagashima,et al.  HIV-1 uncoats in the nucleus near sites of integration , 2020, Proceedings of the National Academy of Sciences.

[11]  Cyclic GMP-AMP Synthase , 2020, Definitions.

[12]  J. Hofkens,et al.  Capsid-Labelled HIV To Investigate the Role of Capsid during Nuclear Import and Integration , 2020, Journal of Virology.

[13]  Y. Yamauchi,et al.  Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating , 2019, Nature Microbiology.

[14]  Y. Xiong,et al.  FEZ1 Is Recruited to a Conserved Cofactor Site on Capsid to Promote HIV-1 Trafficking. , 2019, Cell reports.

[15]  N. Krogan,et al.  Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the viral Core , 2019, bioRxiv.

[16]  T. Schaller,et al.  The ability of SAMHD1 to block HIV-1 but not SIV requires expression of MxB. , 2019, Virology.

[17]  A. Engelman,et al.  Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6 , 2019, Nucleic acids research.

[18]  J. Luban,et al.  Cyclophilin A protects HIV-1 from restriction by human TRIM5α , 2019, Nature Microbiology.

[19]  M. Malim,et al.  Immunoproteasome activation enables human TRIM5α restriction of HIV-1 , 2019, Nature Microbiology.

[20]  Barbara Müller,et al.  HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex , 2019, eLife.

[21]  L. James,et al.  Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling , 2018, Cell host & microbe.

[22]  C. Tremblay,et al.  HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state , 2018, PLoS pathogens.

[23]  M. Malim,et al.  Multiple components of the nuclear pore complex interact with the amino-terminus of MX2 to facilitate HIV-1 restriction , 2018, PLoS pathogens.

[24]  A. Macdonald Structural requirements , 2018, Structure and Architecture.

[25]  A. Gronenborn,et al.  Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α identified by magic-angle spinning NMR and molecular dynamics simulations , 2018, Proceedings of the National Academy of Sciences.

[26]  Y. Xiong,et al.  MxB restricts HIV-1 by targeting the tri-hexamer interface of the viral capsid , 2018, bioRxiv.

[27]  J. Keown,et al.  A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8 proteins , 2018, The Journal of Biological Chemistry.

[28]  Matteo Gentili,et al.  NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate Immune Activation , 2018, Cell.

[29]  D. Häussinger,et al.  MXB inhibits murine cytomegalovirus. , 2018, Virology.

[30]  A. Brass,et al.  Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration. , 2018, Cell host & microbe.

[31]  P. Bieniasz,et al.  Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2 , 2018, eLife.

[32]  J. Delrow,et al.  A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV , 2018, bioRxiv.

[33]  M. Severgnini,et al.  Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells , 2018, Journal of Virology.

[34]  C. Aiken,et al.  Inhibitors of the HIV-1 capsid, a target of opportunity , 2018, Current opinion in HIV and AIDS.

[35]  G. Kochs,et al.  Human MxB Protein Is a Pan-herpesvirus Restriction Factor , 2018, Journal of Virology.

[36]  C. Fraefel,et al.  MxB is an interferon-induced restriction factor of human herpesviruses , 2018, Nature Communications.

[37]  G. Melikyan,et al.  Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. , 2018, Cell host & microbe.

[38]  O. Abdel-Rahim,et al.  Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection , 2017, Proceedings of the National Academy of Sciences.

[39]  Thomas J Hope,et al.  Early cytoplasmic uncoating is associated with infectivity of HIV-1 , 2017, Proceedings of the National Academy of Sciences.

[40]  Jianbo Chen,et al.  Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes , 2017, PLoS pathogens.

[41]  T. Noda,et al.  Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis , 2017, PLoS pathogens.

[42]  M. Vendruscolo,et al.  Emergence and evolution of an interaction between intrinsically disordered proteins , 2017, eLife.

[43]  C. Aiken,et al.  Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly , 2017, Journal of Virology.

[44]  J. Briggs,et al.  The structure and flexibility of conical HIV-1 capsids determined within intact virions , 2016, Science.

[45]  C. Rice,et al.  Supplemental Information Identification of Interferon-stimulated Genes with Antiretroviral Activity , 2022 .

[46]  O. Cosnefroy,et al.  HIV-1 capsid uncoating initiates after the first strand transfer of reverse transcription , 2016, Retrovirology.

[47]  M. Negroni,et al.  Buffering deleterious polymorphisms in highly constrained parts of HIV-1 envelope by flexible regions , 2016, Retrovirology.

[48]  M. Yeager,et al.  Crystal structure of an HIV assembly and maturation switch , 2016, eLife.

[49]  A. Engelman,et al.  Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage In Vivo , 2016, Journal of Virology.

[50]  G. Jensen,et al.  Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids , 2016, eLife.

[51]  G. A. Frank,et al.  Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α , 2016, eLife.

[52]  T. Hope,et al.  KIF5B and Nup358 Cooperatively Mediate the Nuclear Import of HIV-1 during Infection , 2016, PLoS pathogens.

[53]  G. Melikyan,et al.  Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells , 2016, PLoS pathogens.

[54]  C. Bond,et al.  The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold , 2016, Nucleic acids research.

[55]  N. Kootstra,et al.  Mutations in CypA Binding Region of HIV-1 Capsid Affect Capsid Stability and Viral Replication in Primary Macrophages. , 2016, AIDS research and human retroviruses.

[56]  A. Engelman,et al.  The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes* , 2016, The Journal of Biological Chemistry.

[57]  Benjamin A. Himes,et al.  Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site , 2016, Nature Communications.

[58]  T. Schwartz,et al.  The Nuclear Pore Complex as a Flexible and Dynamic Gate , 2016, Cell.

[59]  A. Hyman,et al.  Visualizing the molecular sociology at the HeLa cell nuclear periphery , 2016, Science.

[60]  A. Engelman,et al.  A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin , 2016, Proceedings of the National Academy of Sciences.

[61]  T. Hope,et al.  TRIM5α Degradation via Autophagy Is Not Required for Retroviral Restriction , 2016, Journal of Virology.

[62]  Weidong Yang,et al.  Super-resolution imaging of nuclear import of adeno-associated virus in live cells , 2015, Molecular therapy. Methods & clinical development.

[63]  A. Brass,et al.  Direct Visualization of HIV-1 Replication Intermediates Shows that Capsid and CPSF6 Modulate HIV-1 Intra-nuclear Invasion and Integration. , 2015, Cell reports.

[64]  K. Schulten,et al.  Dynamic allostery governs cyclophilin A–HIV capsid interplay , 2015, Proceedings of the National Academy of Sciences.

[65]  R. Sanjuán,et al.  The external domains of the HIV-1 envelope are a mutational cold spot , 2015, Nature Communications.

[66]  P. Bork,et al.  In situ structural analysis of the human nuclear pore complex , 2015, Nature.

[67]  C. Cavedon,et al.  Time-Resolved Imaging , 2015 .

[68]  B. Vollmer,et al.  Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly. , 2015, Developmental cell.

[69]  F. Diaz-Griffero,et al.  Restriction of HIV-1 Requires the N-Terminal Region of MxB as a Capsid-Binding Motif but Not as a Nuclear Localization Signal , 2015, Journal of Virology.

[70]  T. Hope,et al.  Complementary Assays Reveal a Low Level of CA Associated with Viral Complexes in the Nuclei of HIV-1-Infected Cells , 2015, Journal of Virology.

[71]  Attila Kertesz-Farkas,et al.  Nuclear architecture dictates HIV-1 integration site selection , 2015, Nature.

[72]  D. Walsh,et al.  HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus , 2015, Nature Communications.

[73]  M. Malim,et al.  A Triple-Arginine Motif in the Amino-Terminal Domain and Oligomerization Are Required for HIV-1 Inhibition by Human MX2 , 2015, Journal of Virology.

[74]  M. Yeager,et al.  Structural basis of HIV-1 capsid recognition by PF74 and CPSF6 , 2014, Proceedings of the National Academy of Sciences.

[75]  J. Briggs,et al.  Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution , 2014, Nature.

[76]  D. Mu,et al.  Independent birth of a novel TRIMCyp in Tupaia belangeri with a divergent function from its paralog TRIM5. , 2014, Molecular biology and evolution.

[77]  Kenneth A. Matreyek,et al.  Host and viral determinants for MxB restriction of HIV-1 infection , 2014, Retrovirology.

[78]  J. Chin,et al.  Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly , 2014, PLoS pathogens.

[79]  E. Campbell,et al.  HIV-1 Uncoating Is Facilitated by Dynein and Kinesin 1 , 2014, Journal of Virology.

[80]  F. Kirchhoff,et al.  TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. , 2014, Developmental cell.

[81]  Xiaolu Yang,et al.  Stabilized human TRIM5α protects human T cells from HIV-1 infection. , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[82]  T. Nakano,et al.  Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2. , 2014, The Journal of general virology.

[83]  M. Peretz,et al.  A Cyclophilin Homology Domain-Independent Role for Nup358 in HIV-1 Infection , 2014, PLoS pathogens.

[84]  A. Engelman,et al.  Structural basis for nuclear import of splicing factors by human Transportin 3 , 2014, Proceedings of the National Academy of Sciences.

[85]  C. Aiken,et al.  In Vivo Functions of CPSF6 for HIV-1 as Revealed by HIV-1 Capsid Evolution in HLA-B27-Positive Subjects , 2014, PLoS pathogens.

[86]  I. Hurbain,et al.  The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. , 2013, Immunity.

[87]  P. Hulpiau,et al.  Mx Proteins: Antiviral Gatekeepers That Restrain the Uninvited , 2013, Microbiology and Molecular Reviews.

[88]  M. Negroni,et al.  Genetic diversity of the highly variable V1 region interferes with Human Immunodeficiency Virus type 1 envelope functionality , 2013, Retrovirology.

[89]  L. James,et al.  HIV-1 evades innate immune recognition through specific co-factor recruitment , 2013, Nature.

[90]  Shilei Ding,et al.  The interferon-inducible MxB protein inhibits HIV-1 infection. , 2013, Cell host & microbe.

[91]  Charles M. Rice,et al.  MX2 is an interferon-induced inhibitor of HIV-1 infection , 2013, Nature.

[92]  A. Fassati,et al.  Viruses Challenge Selectivity Barrier of Nuclear Pores , 2013, Viruses.

[93]  M. Malim,et al.  Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection , 2013, Nature.

[94]  L. James,et al.  HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358 , 2013, Retrovirology.

[95]  Morgane Rolland,et al.  Fitness Costs of Mutations at the HIV-1 Capsid Hexamerization Interface , 2013, PloS one.

[96]  Robert J. Gifford,et al.  Extreme Genetic Fragility of the HIV-1 Capsid , 2013, Retrovirology.

[97]  Klaus Schulten,et al.  Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics , 2013, Nature.

[98]  M. Severgnini,et al.  Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication , 2013, Retrovirology.

[99]  R. Gorelick,et al.  The ability of TNPO3-depleted cells to inhibit HIV-1 infection requires CPSF6 , 2013, Retrovirology.

[100]  S. Kutluay,et al.  Fates of Retroviral Core Components during Unrestricted and TRIM5-Restricted Infection , 2013, PLoS pathogens.

[101]  S. Antonarakis,et al.  TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm , 2013, Retrovirology.

[102]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA , 2013, Science.

[103]  Michael Emerman,et al.  Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes , 2013, Proceedings of the National Academy of Sciences.

[104]  A. Engelman,et al.  The Host Proteins Transportin SR2/TNPO3 and Cyclophilin A Exert Opposing Effects on HIV-1 Uncoating , 2012, Journal of Virology.

[105]  Kenneth A. Matreyek,et al.  Differential Effects of Human Immunodeficiency Virus Type 1 Capsid and Cellular Factors Nucleoporin 153 and LEDGF/p75 on the Efficiency and Specificity of Viral DNA Integration , 2012, Journal of Virology.

[106]  F. Diaz-Griffero,et al.  Inhibition of Reverse Transcriptase Activity Increases Stability of the HIV-1 Core , 2012, Journal of Virology.

[107]  S. Shorte,et al.  Human Nucleoporins Promote HIV-1 Docking at the Nuclear Pore, Nuclear Import and Integration , 2012, PloS one.

[108]  A. Iwasaki Innate immune recognition of HIV-1. , 2012, Immunity.

[109]  Gianguido C. Cianci,et al.  Recruitment and Dynamics of Proteasome Association with rhTRIM5α Cytoplasmic Complexes During HIV‐1 Infection , 2012, Traffic.

[110]  Torsten Schaller,et al.  CPSF6 Defines a Conserved Capsid Interface that Modulates HIV-1 Replication , 2012, PLoS pathogens.

[111]  Norman E. Davey,et al.  Structure of the immature retroviral capsid at 8 Å resolution by cryo-electron microscopy , 2012, Nature.

[112]  A. Brass,et al.  TNPO3 Is Required for HIV-1 Replication after Nuclear Import but prior to Integration and Binds the HIV-1 Core , 2012, Journal of Virology.

[113]  A. Engelman,et al.  Human Immunodeficiency Virus Type 1 Capsid Mutation N74D Alters Cyclophilin A Dependence and Impairs Macrophage Infection , 2012, Journal of Virology.

[114]  S. Sawyer,et al.  HIV-1 Capsid-Targeting Domain of Cleavage and Polyadenylation Specificity Factor 6 , 2012, Journal of Virology.

[115]  Mahdad Noursadeghi,et al.  HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency , 2011, PLoS pathogens.

[116]  T. Kigawa,et al.  RING Domain Mutations Uncouple TRIM5α Restriction of HIV-1 from Inhibition of Reverse Transcription and Acceleration of Uncoating , 2011, Journal of Virology.

[117]  J. Luban,et al.  TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions , 2011, Retrovirology.

[118]  G. Schröder,et al.  Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. , 2011, Immunity.

[119]  N. Landau,et al.  The Cargo-Binding Domain of Transportin 3 Is Required for Lentivirus Nuclear Import , 2011, Journal of Virology.

[120]  A. Fassati,et al.  Transportin 3 Promotes a Nuclear Maturation Step Required for Efficient HIV-1 Integration , 2011, PLoS pathogens.

[121]  T. Hope,et al.  Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription , 2011, Proceedings of the National Academy of Sciences.

[122]  J. Aitchison,et al.  The Nuclear Pore , 2011 .

[123]  Kenneth A. Matreyek,et al.  The Requirement for Nucleoporin NUP153 during Human Immunodeficiency Virus Type 1 Infection Is Determined by the Viral Capsid , 2011, Journal of Virology.

[124]  Torsten Schaller,et al.  HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2 , 2011, PLoS pathogens.

[125]  A. Gronenborn,et al.  Rhesus TRIM5α Disrupts the HIV-1 Capsid at the InterHexamer Interfaces , 2011, PLoS pathogens.

[126]  Ashok Chauhan,et al.  Perturbation of Host Nuclear Membrane Component RanBP2 Impairs the Nuclear Import of Human Immunodeficiency Virus -1 Preintegration Complex (DNA) , 2010, PloS one.

[127]  Mark Yeager,et al.  Atomic level modeling of the HIV capsid , 2010, Nature.

[128]  J. Briggs,et al.  Structural Analysis of HIV-1 Maturation Using Cryo-Electron Tomography , 2010, PLoS pathogens.

[129]  W. Taylor,et al.  Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. , 2010, Cell host & microbe.

[130]  M. Niepel,et al.  The nuclear pore complex: bridging nuclear transport and gene regulation , 2010, Nature Reviews Molecular Cell Biology.

[131]  Naoki Kishimoto,et al.  Uncoating of Human Immunodeficiency Virus Type 1 Requires Prolyl Isomerase Pin1* , 2010, The Journal of Biological Chemistry.

[132]  J. Luban,et al.  p62/Sequestosome-1 Associates with and Sustains the Expression of Retroviral Restriction Factor TRIM5α , 2010, Journal of Virology.

[133]  A. Engelman,et al.  Flexible use of nuclear import pathways by HIV-1. , 2010, Cell host & microbe.

[134]  Peijun Zhang,et al.  Structural Convergence between Cryo-EM and NMR Reveals Intersubunit Interactions Critical for HIV-1 Capsid Function , 2009, Cell.

[135]  Kenneth A. Matreyek,et al.  The Requirement for Cellular Transportin 3 (TNPO3 or TRN-SR2) during Infection Maps to Human Immunodeficiency Virus Type 1 Capsid and Not Integrase , 2009, Journal of Virology.

[136]  J. Sodroski,et al.  Target Cell Type-Dependent Modulation of Human Immunodeficiency Virus Type 1 Capsid Disassembly by Cyclophilin A , 2009, Journal of Virology.

[137]  J. Briggs,et al.  Structure and assembly of immature HIV , 2009, Proceedings of the National Academy of Sciences.

[138]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[139]  J. Archer,et al.  Molecular Mechanisms of Recombination Restriction in the Envelope Gene of the Human Immunodeficiency Virus , 2009, PLoS pathogens.

[140]  J. Hauber,et al.  The nuclear pore component Nup358 promotes transportin-dependent nuclear import , 2009, Journal of Cell Science.

[141]  Eric J. Arts,et al.  Variable Fitness Impact of HIV-1 Escape Mutations to Cytotoxic T Lymphocyte (CTL) Response , 2009, PLoS pathogens.

[142]  C. Feschotte,et al.  Parallel Germline Infiltration of a Lentivirus in Two Malagasy Lemurs , 2009, PLoS genetics.

[143]  Alasdair C. Steven,et al.  Visualization of a Missing Link in Retrovirus Capsid Assembly , 2009, Nature.

[144]  L. James,et al.  Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D , 2008, Journal of Virology.

[145]  R. König,et al.  Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication , 2008, Cell.

[146]  Zeger Debyser,et al.  Transportin-SR2 Imports HIV into the Nucleus , 2008, Current Biology.

[147]  Anchi Cheng,et al.  Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice , 2007, Cell.

[148]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2007, Science.

[149]  S. Guadagnini,et al.  HIV‐1 DNA Flap formation promotes uncoating of the pre‐integration complex at the nuclear pore , 2007, The EMBO journal.

[150]  Christopher L. Fillmore,et al.  Electron cryotomography of immature HIV‐1 virions reveals the structure of the CA and SP1 Gag shells , 2007, The EMBO journal.

[151]  O. Pybus,et al.  Discovery and analysis of the first endogenous lentivirus , 2007, Proceedings of the National Academy of Sciences.

[152]  R. Gorelick,et al.  Efficiency of Human Immunodeficiency Virus Type 1 Postentry Infection Processes: Evidence against Disproportionate Numbers of Defective Virions , 2007, Journal of Virology.

[153]  A. Engelman,et al.  Proteasome Inhibition Reveals that a Functional Preintegration Complex Intermediate Can Be Generated during Restriction by Diverse TRIM5 Proteins , 2006, Journal of Virology.

[154]  C. Aiken,et al.  Saturation of TRIM5 alpha-mediated restriction of HIV-1 infection depends on the stability of the incoming viral capsid. , 2006, Virology.

[155]  J. Sodroski,et al.  Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. , 2006, Virology.

[156]  T. Hope,et al.  Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[158]  D. Pérez-Caballero,et al.  Restriction of Human Immunodeficiency Virus Type 1 by TRIM-CypA Occurs with Rapid Kinetics and Independently of Cytoplasmic Bodies, Ubiquitin, and Proteasome Activity , 2005, Journal of Virology.

[159]  A. Kaplan,et al.  Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates , 2005, Retrovirology.

[160]  J. Luban,et al.  TRIM5α selectively binds a restriction-sensitive retroviral capsid , 2005, Retrovirology.

[161]  A. Wagner Robustness, evolvability, and neutrality , 2005, FEBS letters.

[162]  J. Sodroski,et al.  Species-Specific Variation in the B30.2(SPRY) Domain of TRIM5α Determines the Potency of Human Immunodeficiency Virus Restriction , 2005, Journal of Virology.

[163]  C. Aiken,et al.  Structural Requirements for Recognition of the Human Immunodeficiency Virus Type 1 Core during Host Restriction in Owl Monkey Cells , 2005, Journal of Virology.

[164]  Jonathan P. Stoye,et al.  A Single Amino Acid Change in the SPRY Domain of Human Trim5α Leads to HIV-1 Restriction , 2005, Current Biology.

[165]  D. Pérez-Caballero,et al.  Cyclophilin Interactions with Incoming Human Immunodeficiency Virus Type 1 Capsids with Opposing Effects on Infectivity in Human Cells , 2005, Journal of Virology.

[166]  J. Sodroski,et al.  TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[167]  G. Towers,et al.  The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[168]  A. Yang,et al.  Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  S. Nisole,et al.  Trim5α protein restricts both HIV-1 and murine leukemia virus , 2004 .

[170]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[171]  P. Prevelige,et al.  Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange , 2004, Nature Structural &Molecular Biology.

[172]  G. Raposo,et al.  Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[173]  Wesley I. Sundquist,et al.  Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein , 2004, Journal of Virology.

[174]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[175]  G. Wagner,et al.  PERSPECTIVE: EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS , 2003 .

[176]  G. Wagner,et al.  EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS , 2003 .

[177]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[178]  P. Prevelige,et al.  Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. , 2003, Journal of molecular biology.

[179]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[180]  P. Bieniasz,et al.  Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Y. Takeuchi,et al.  Restriction of lentivirus in monkeys , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[182]  M. Summers,et al.  Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein , 2002, Nature Structural Biology.

[183]  Christopher J. Oldfield,et al.  Evolutionary Rate Heterogeneity in Proteins with Long Disordered Regions , 2002, Journal of Molecular Evolution.

[184]  Wesley I. Sundquist,et al.  Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication , 2002, Journal of Virology.

[185]  D. A. Bosco,et al.  Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Alessandro Guffanti,et al.  The tripartite motif family identifies cell compartments , 2001, The EMBO journal.

[187]  S. Goff,et al.  Characterization of Intracellular Reverse Transcription Complexes of Human Immunodeficiency Virus Type 1 , 2001, Journal of Virology.

[188]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[189]  B. Strack,et al.  Efficient Particle Production by Minimal Gag Constructs Which Retain the Carboxy-Terminal Domain of Human Immunodeficiency Virus Type 1 Capsid-p2 and a Late Assembly Domain , 2000, Journal of Virology.

[190]  M. Lai,et al.  A Human Importin-β Family Protein, Transportin-SR2, Interacts with the Phosphorylated RS Domain of SR Proteins* , 2000, The Journal of Biological Chemistry.

[191]  J. Sodroski,et al.  Species-Specific, Postentry Barriers to Primate Immunodeficiency Virus Infection , 1999, Journal of Virology.

[192]  S. Goff,et al.  Characterization of Intracellular Reverse Transcription Complexes of Moloney Murine Leukemia Virus , 1999, Journal of Virology.

[193]  Jennifer L. Bachorik,et al.  Transportin-SR, a Nuclear Import Receptor for SR Proteins , 1999, The Journal of cell biology.

[194]  W. Sundquist,et al.  Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. , 1997, Science.

[195]  F. Bushman,et al.  Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition , 1997, Journal of virology.

[196]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[197]  J. Luban,et al.  Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A , 1996, Journal of virology.

[198]  Wesley I. Sundquist,et al.  Structure of the Amino-Terminal Core Domain of the HIV-1 Capsid Protein , 1996, Science.

[199]  J. Luban,et al.  Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription , 1996, Journal of virology.

[200]  A. Adachi,et al.  Early replication block of human immunodeficiency virus type 1 in monkey cells. , 1995, The Journal of general virology.

[201]  A. Kaplan,et al.  The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions , 1994, Journal of virology.

[202]  J. Luban,et al.  Specific incorporation of cyclophilin A into HIV-1 virions , 1994, Nature.

[203]  U. Weidle,et al.  A heptanucleotide sequence mediates ribosomal frameshifting in mammalian cells , 1993, Journal of virology.

[204]  M. Bukrinsky,et al.  Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[205]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[206]  L. Arthur,et al.  Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processings, and complete amino acid sequences , 1992, Journal of virology.

[207]  H. Varmus,et al.  Characterization of ribosomal frameshifting in HIV-1 gag-pol expression , 1988, Nature.

[208]  O. Jarrett Retroviruses , 1998, Nature Medicine.

[209]  Mark Yeager,et al.  Atomic-level modelling of the HIV capsid , 2011 .

[210]  S. Nisole,et al.  Trim 5 protein restricts both HIV-1 and murine leukemia virus , 2004 .

[211]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[212]  W. Keller,et al.  Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. , 1998, Molecular cell.

[213]  M. Newton,et al.  Structure of the Carboxyl-Terminal Dimerization Domain of the HIV-1 Capsid Protein , 1997 .

[214]  E. Tramont,et al.  The human immunodeficiency virus. , 1991, Dermatologic clinics.

[215]  H. Varmus Reverse transcription. , 1987, Scientific American.

[216]  N. D. Goldberg,et al.  Cyclic GMP. , 1973, Advances in cyclic nucleotide research.

[217]  Norman K. Farmer in critical , 1972, Renaissance Quarterly.

[218]  K. Smith What is a Virus? , 1955, Nature.