A Survey of Computational Models for Adhesion

This work presents a survey of computational methods for adhesive contact focusing on general continuum mechanical models for attractive interactions between solids that are suitable for describing bonding and debonding of arbitrary bodies. The most general approaches are local models that can be applied irrespective of the geometry of the bodies. Two cases can be distinguished: local material models governing the constitutive behavior of adhesives, and local interface models governing adhesion and cohesion at interfaces in the form of traction–separation laws. For both models various sub-categories are identified and described, and used to organize the available literature that has contributed to their advancement. Due to their popularity and importance, this survey also gives an overview of effective adhesion models that have been formulated to characterize the global behavior of specific adhesion problems.

[1]  Non-Hertzian contact of elastic spheres , 1975 .

[2]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[3]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Peter E. McHugh,et al.  Computational mechanics modelling of cell–substrate contact during cyclic substrate deformation , 2005 .

[5]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[6]  Liping Liu THEORY OF ELASTICITY , 2012 .

[7]  R. Sauer A contact theory for surface tension driven systems , 2016 .

[8]  N. McGruer,et al.  A Model of Contact With Adhesion of a Layered Elastic-Plastic Microsphere With a Rigid Flat Surface , 2011 .

[9]  Mechanics of membrane–membrane adhesion , 2011 .

[10]  A. Touzaline Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials , 2010 .

[11]  Y. W. Zhang,et al.  Computational analysis of adhesion force in the indentation of cells using atomic force microscopy. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. D. Moura,et al.  Determination of cohesive laws of composite bonded joints under mode II loading , 2013 .

[13]  M. Kroon,et al.  Numerical analysis of dynamic crack propagation in biaxially strained rubber sheets , 2014 .

[14]  Wonkyu Moon,et al.  Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold , 2007 .

[15]  Jian Zhang,et al.  A phase field model for vesicle-substrate adhesion , 2009, J. Comput. Phys..

[16]  S. Luding Cohesive, frictional powders: contact models for tension , 2008 .

[17]  Jiunn-Jong Wu Adhesive contact between a nano-scale rigid sphere and an elastic half-space , 2006 .

[18]  Ronald S. Fearing,et al.  Towards friction and adhesion from high modulus microfiber arrays , 2007 .

[19]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[20]  Jay X. Tang,et al.  Adhesion of single bacterial cells in the micronewton range. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Felder,et al.  Cross-sectional nanoindentation for copper adhesion characterization in blanket and patterned interconnect structures: experiments and three-dimensional FEM modeling , 2007 .

[22]  P. Wriggers,et al.  Multi-scale Approach for Frictional Contact of Elastomers on Rough Rigid Surfaces , 2009 .

[23]  Anders Klarbring,et al.  A geometrically nonlinear model of the adhesive joint problem and its numerical treatment , 1992 .

[24]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[25]  Ian A. Ashcroft,et al.  Prediction of Joint Strength Under Humid Conditions: Damage Mechanics Approach , 2013 .

[26]  Robert D. Adams,et al.  Stress analysis of adhesive-bonded lap joints , 1974 .

[27]  M. Apalak,et al.  Geometrically non-linear analysis of adhesively bonded double containment cantilever joints , 1997 .

[28]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  K. Johnson,et al.  The adhesion of two elastic bodies with slightly wavy surfaces , 1995 .

[30]  I. Ashcroft,et al.  Effect of Water and Mechanical Stress on Durability , 2017 .

[31]  R. Adams,et al.  Single Lap Joints with Rounded Adherend Corners: Stress and Strain Analysis , 2011 .

[32]  Erol Sancaktar Constitutive Adhesive and Sealant Models , 2011 .

[33]  Yueguang Wei Modeling nonlinear peeling of ductile thin films––critical assessment of analytical bending models using FE simulations , 2004 .

[34]  B. Persson Theory of rubber friction and contact mechanics , 2001 .

[35]  Alberto Carpinteri,et al.  The effect of contact on the decohesion of laminated beams with multiple microcracks , 2008 .

[36]  B. Persson,et al.  A Multiscale Molecular Dynamics Approach to Contact Mechanics and Friction: From Continuum Mechanics to Molecular Dynamics , 2007 .

[37]  John W. Hutchinson,et al.  Interface strength, work of adhesion and plasticity in the peel test , 1998 .

[38]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[39]  Qunyang Li,et al.  Micromechanics of Rough Surface Adhesion: A Homogenized Projection Method , 2009 .

[40]  Giulio Alfano,et al.  Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model , 2002 .

[41]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[42]  N A de Bruyne,et al.  The Physics of Adhesion , 1947 .

[43]  J. J. Telega,et al.  Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part II – Numerical implementation and application to implanted knee joints , 2001 .

[44]  Physical Properties of Adhesives , 2011 .

[45]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[46]  Anders Klarbring,et al.  Derivation of a model of adhesively bonded joints by the asymptotic expansion method , 1991 .

[47]  Y. Shouwen,et al.  A model for computational investigation of elasto-plastic normal and tangential contact considering adhesion effect , 2004 .

[48]  F. Gruttmann,et al.  A finite element model for the analysis of buckling driven delaminations of thin films on rigid substrates , 2007 .

[49]  Markus Bambach,et al.  A finite element framework for the evolution of bond strength in joining-by-forming processes , 2014 .

[50]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[51]  Giuseppe Carbone,et al.  Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface , 2004 .

[52]  T. Andersson,et al.  On the effective constitutive properties of a thin adhesive layer loaded in peel , 2006 .

[53]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[54]  Ulf Edlund,et al.  Surface adhesive joint description with coupled elastic-plastic damage behaviour and numerical applications , 1994 .

[55]  A. Jagota,et al.  An easy-to-implement numerical simulation method for adhesive contact problems involving asymmetric adhesive contact , 2011 .

[56]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Ted Diehl,et al.  On using a penalty-based cohesive-zone finite element approach, Part I: Elastic solution benchmarks , 2008 .

[58]  Weiwei Wang,et al.  Multiscale Modeling of Platelet Adhesion and Thrombus Growth , 2012, Annals of Biomedical Engineering.

[59]  G.A.O. Davies,et al.  Decohesion finite element with enriched basis functions for delamination , 2009 .

[60]  Kunio Takahashi,et al.  An analytical approach for the adhesion of a semi-infinite elastic body in contact with a sinusoidal rigid surface under zero external pressure , 2007 .

[61]  M. L. Williams,et al.  Finite element in adhesion analyses , 1973 .

[62]  K. Painter,et al.  A continuum approach to modelling cell-cell adhesion. , 2006, Journal of theoretical biology.

[63]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[64]  Roger A Sauer,et al.  Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta , 2009, Computer methods in biomechanics and biomedical engineering.

[65]  M. Banea,et al.  Adhesively bonded joints in composite materials: An overview , 2009 .

[66]  Roger A. Sauer,et al.  NURBS-enriched contact finite elements , 2014 .

[67]  SOME THEORETICAL ASPECTS IN COMPUTATIONAL ANALYSIS OF ADHESIVE LAP JOINTS , 2014 .

[68]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[69]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[70]  Marc G. D. Geers,et al.  Multi-scale modelling of delamination through fibrillation , 2014 .

[71]  Binquan Luan,et al.  Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Roger A. Sauer,et al.  An atomic interaction‐based continuum model for computational multiscale contact mechanics , 2007 .

[73]  P. Sahoo Adhesive friction for elastic–plastic contacting rough surfaces considering asperity interaction , 2006 .

[74]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[75]  Roger A. Sauer,et al.  A detailed 3D finite element analysis of the peeling behaviour of a gecko spatula , 2013, Computer methods in biomechanics and biomedical engineering.

[76]  R. Amal,et al.  Effect of Adhesion on Aggregation in Nanoparticle Dispersions , 2007 .

[77]  Stanislav N. Gorb,et al.  Contact mechanics of pad of grasshopper (Insecta: ORTHOPTERA) by finite element methods , 2009 .

[78]  Zheng Linqing,et al.  Adhesive Contact of Flat-Ended Wedges: Theory and Computer Experiments , 1999 .

[79]  Thomas Frisch,et al.  Peeling off an elastica from a smooth attractive substrate. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  M. Cocu,et al.  A consistent model coupling adhesion, friction, and unilateral contact , 1999 .

[81]  G. Carbone,et al.  Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories , 2009, The European physical journal. E, Soft matter.

[82]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[83]  G. Piero,et al.  A unified model for adhesive interfaces with damage, viscosity, and friction , 2010 .

[84]  R. Hunter,et al.  Influence of Roughness on the Mechanical Adhesion of Single Lap Joints , 2012 .

[85]  B. N. J. Perssona The effect of surface roughness on the adhesion of elastic solids , 2001 .

[86]  A. Jesus,et al.  Strength prediction of single- and double-lap joints by standard and extended finite element modelling , 2011 .

[87]  K. Kendall,et al.  Atomistic studies of surface adhesions using molecular–dynamics simulations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  Roger A. Sauer,et al.  An atomic interaction-based continuum model for adhesive contact mechanics , 2007 .

[89]  Roger A. Sauer,et al.  Enriched contact finite elements for stable peeling computations , 2011 .

[90]  Robert D. Adams,et al.  Development of a dilatometer and measurement of the shrinkage behaviour of adhesives during cure , 2013 .

[91]  Amit Pathak,et al.  The simulation of stress fibre and focal adhesion development in cells on patterned substrates , 2007, Journal of The Royal Society Interface.

[92]  Robert M. McMeeking,et al.  Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling , 2014, Journal of The Royal Society Interface.

[93]  Paul Steinmann,et al.  A finite strain framework for the simulation of polymer curing. Part II. Viscoelasticity and shrinkage , 2010 .

[94]  J. Comyn,et al.  Thermal Properties of Adhesives , 2011 .

[95]  Jinyang Zheng,et al.  Recent developments on damage modeling and finite element analysis for composite laminates: A review , 2010 .

[96]  Shaofan Li,et al.  An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling. , 2008, Journal of nanoscience and nanotechnology.

[97]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[98]  Chung-Yuen Hui,et al.  The mechanics of contact and adhesion of periodically rough surfaces , 2001 .

[99]  Peter Schmidt,et al.  Analysis of adhesively bonded joints: a finite element method and a material model with damage , 2006 .

[100]  Riccarda Rossi,et al.  Global existence for a contact problem with adhesion , 2008 .

[101]  E. Kramer,et al.  The deformation and adhesion of randomly rough and patterned surfaces. , 2006, The journal of physical chemistry. B.

[102]  E. Arzt,et al.  Adhesive contact between flat punches with finite edge radius and an elastic half-space , 2007 .

[103]  I. Ashcroft,et al.  The effect of residual strains on the progressive damage modelling of environmentally degraded adhesive joints , 2005 .

[104]  M. Sofonea,et al.  Analysis of electroelastic frictionless contact problems with adhesion. , 2006 .

[105]  Anand Jagota,et al.  Surface formulation for molecular interactions of macroscopic bodies , 1997 .

[106]  Mohammed Cherkaoui,et al.  An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth , 2013 .

[107]  J. F. Padday The profiles of axially symmetric menisci , 1971, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[108]  James Q. Feng Contact behavior of spherical elastic particles: a computational study of particle adhesion and deformations , 2000 .

[109]  Vitelmo V. Bertero,et al.  Local bond stress-slip relationships of deformed bars under generalized excitations , 1982 .

[110]  R. Sauer,et al.  An energy‐momentum‐conserving temporal discretization scheme for adhesive contact problems , 2013 .

[111]  Roger A. Sauer,et al.  The Peeling Behavior of Thin Films with Finite Bending Stiffness and the Implications on Gecko Adhesion , 2011 .

[112]  J. Gonçalves,et al.  A straightforward method to obtain the cohesive laws of bonded joints under mode I loading , 2012 .

[113]  Tongxi Yu,et al.  Mechanics of adhesion in MEMS—a review , 2003 .

[114]  Yu Tian,et al.  Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System , 2007 .

[115]  I. Ashcroft,et al.  Prediction of Joint Strength Under Humid Conditions with Cyclic Loading , 2013 .

[116]  J. Barbera,et al.  Contact mechanics , 1999 .

[117]  H. Yao,et al.  Bio-inspired mechanics of bottom-up designed hierarchical materials : robust and releasable adhesion systems of gecko , 2007 .

[118]  Ulf Stigh,et al.  The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces , 2004 .

[119]  Wolf B. Dapp,et al.  Systematic analysis of Persson’s contact mechanics theory of randomly rough elastic surfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[120]  Giorgio Zavarise,et al.  Modeling of mixed-mode debonding in the peel test applied to superficial reinforcements , 2008 .

[121]  A. Fogelson A MATHEMATICAL MODEL AND NUMERICAL METHOD FOR STUDYING PLATELET ADHESION AND AGGREGATION DURING BLOOD CLOTTING , 1984 .

[122]  Robert D. Adams,et al.  Peel Analysis Using the Finite Element Method , 1981 .

[123]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[124]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[125]  Riccarda Rossi,et al.  Analysis of a unilateral contact problem taking into account adhesion and friction , 2012 .

[126]  Geng Liu,et al.  An EFG-FE Coupling Method for Microscale Adhesive Contacts , 2006 .

[127]  Roger A. Sauer,et al.  On the Optimum Shape of Thin Adhesive Strips for Various Peeling Directions , 2014 .

[128]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[129]  P. Panagiotopoulos,et al.  Three-dimensional adhesive contact laws with debonding: a nonconvex energy bundle method , 2000 .

[130]  A. Rasmuson,et al.  Numerical modelling of breakage and adhesion of loose fine-particle agglomerates , 2014 .

[131]  Roger A. Sauer,et al.  Computational optimization of adhesive microstructures based on a nonlinear beam formulation , 2014 .

[132]  Roger A. Sauer,et al.  A geometrically exact finite beam element formulation for thin film adhesion and debonding , 2014 .

[133]  E. Stephan,et al.  Numerical solution of an adhesion problem with FEM and BEM , 2012 .

[134]  Roger A. Sauer,et al.  Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme , 2013 .

[135]  A. Lion,et al.  On the phenomenological representation of curing phenomena in continuum mechanics , 2007 .

[136]  J. Williams Root Rotation and Plastic Work Effects in the Peel Test , 1993 .

[137]  Roger A. Sauer,et al.  Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding , 2015 .

[138]  Xiaocong He A review of finite element analysis of adhesively bonded joints , 2011 .

[139]  Ulf Stigh,et al.  Shear behaviour of adhesive layers , 2007 .

[140]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[141]  Mircea Sofonea,et al.  Elastic beam in adhesive contact , 2002 .

[142]  Thomas Pardoen,et al.  Numerical analysis of the energy contributions in peel tests: A steady-state multilevel finite element approach , 2008 .

[143]  Tian Tang,et al.  Can a fibrillar interface be stronger and tougher than a non-fibrillar one? , 2005, Journal of The Royal Society Interface.

[144]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[145]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[146]  Michel Frémond,et al.  Contact with Adhesion , 1988 .

[147]  David Tabor,et al.  The effect of surface roughness on the adhesion of elastic solids , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[148]  A. D. Crocombe,et al.  Simplified finite element modelling of structural adhesive joints , 1996 .

[149]  Mircea Sofonea,et al.  Analysis and numerical simulations of a dynamic contact problem with adhesion , 2003 .

[150]  L. Freund,et al.  Forced detachment of a vesicle in adhesive contact with a substrate , 2007 .

[151]  Guoqiang Li,et al.  Nonlinear interface shear fracture of end notched flexure specimens , 2009 .

[152]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[153]  Multiscale finite-element models for predicting spontaneous adhesion in MEMS , 2010 .

[154]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[155]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[156]  J. Comyn Diffusion of Water in Adhesives , 2013 .

[157]  P. Wriggers,et al.  A nonlocal cohesive zone model for finite thickness interfaces – Part I: Mathematical formulation and validation with molecular dynamics , 2011 .

[158]  Fan Li,et al.  Modelling adhesive contact between fine particles using material point method , 2011 .

[159]  Raul H. Andruet,et al.  Two- and three-dimensional geometrical nonlinear finite elements for analysis of adhesive joints , 2001 .

[160]  O. Echt,et al.  The influence of shells, electron thermodynamics, and evaporation on the abundance spectra of large sodium metal clusters , 1991 .

[161]  Edward H. Glaessgen,et al.  Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum , 2006 .

[162]  D. Maugis On the contact and adhesion of rough surfaces , 1996 .

[163]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[164]  M. Kocvara,et al.  A Rate-Independent Approach to the Delamination Problem , 2006 .

[165]  Bharat Bhushan,et al.  Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. , 2007, Ultramicroscopy.

[166]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[167]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[168]  B. Derjaguin,et al.  On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane , 1980 .

[169]  N. McGruer,et al.  A finite element model of loading and unloading of an asperity contact with adhesion and plasticity. , 2007, Journal of colloid and interface science.

[170]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[171]  Reinhard Lipowsky,et al.  Adhesion of membranes : a theoretical perspective , 1991 .

[172]  R. Sauer Challenges in Computational Nanoscale Contact Mechanics , 2011 .

[173]  C. Su,et al.  An elastic–plastic interface constitutive model: application to adhesive joints , 2004 .

[174]  M Schargott,et al.  A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures , 2009, Bioinspiration & biomimetics.

[175]  S. Namilae,et al.  Multiscale Model to Study the Effect of Interfaces in Carbon Nanotube-Based Composites , 2005 .

[176]  Jiunn-Jong Wu Easy-to-Implement Equations for Determining Adhesive Contact Parameters with the Accuracy of Numerical Simulations , 2008 .

[177]  Alfred Zmitrowicz,et al.  Contact stresses: a short survey of models and methods of computations , 2010 .

[178]  Shaofan Li,et al.  An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method , 2012 .

[179]  J. Molinari,et al.  Finite-element analysis of contact between elastic self-affine surfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[180]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[181]  Huang Yuan,et al.  Suggestions to the cohesive traction–separation law from atomistic simulations , 2011 .

[182]  U. B. Jayadeep,et al.  Adhesion-Induced Instability in Asperities , 2010 .

[183]  U. Edlund,et al.  A finite element method for failure analysis of adhesively bonded structures , 2010 .

[184]  R. Jones,et al.  Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch , 2009 .

[185]  A. Molinari,et al.  Peeling of Elastic Tapes: Effects of Large Deformations, Pre-Straining, and of a Peel-Zone Model , 2008 .

[186]  Q. Cheng,et al.  Simulations of the spreading of a vesicle on a substrate surface mediated by receptor–ligand binding , 2007 .

[187]  J. A. Greenwood,et al.  Adhesion of elastic spheres , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[188]  B. Persson,et al.  Adhesion between an elastic body and a randomly rough hard surface , 2002, The European physical journal. E, Soft matter.

[189]  J. K. Spelt,et al.  A calibrated finite element model of adhesive peeling , 2003 .

[190]  Chung-Yuen Hui,et al.  Modeling the failure of an adhesive layer in a peel test , 2002 .

[191]  Shizhu Wen,et al.  Finite Element Modeling of the Nano-scale Adhesive Contact and the Geometry-based Pull-off Force , 2011 .

[192]  I. Ashcroft Fatigue Load Conditions , 2018 .

[193]  M. D. Thouless,et al.  A parametric study of the peel test , 2008 .

[194]  D. Dini,et al.  A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale , 2014 .

[195]  J. Cognard,et al.  2-D Modeling of the Behavior of an Adhesive in an Assembly Using a Non-Associated Elasto-Visco-Plastic Model , 2009 .

[196]  Xi-Qiao Feng,et al.  Numerical simulations of the normal impact of adhesive microparticles with a rigid substrate , 2009 .

[197]  R. Sauer Advances in the computational modeling of the gecko adhesion mechanism , 2014 .

[198]  Grenmarie Agresar,et al.  A computational environment for the study of circulating cell mechanics and adhesion. , 1996 .

[199]  Zhen‐Gang Wang,et al.  Nucleation of membrane adhesions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[200]  Sunil Saigal,et al.  COHESIVE ELEMENT MODELING OF VISCOELASTIC FRACTURE: APPLICATION TO PEEL TESTING OF POLYMERS , 2000 .

[201]  Guoqiang Li,et al.  Effects of bondline thickness on Mode-II interfacial laws of bonded laminated composite plate , 2011 .

[202]  Sinisa Dj. Mesarovic,et al.  Adhesive contact of elastic spheres revisited: numerical models and scaling , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[203]  J. J. Telega,et al.  Numerical simulation of bone-implant systems using a more realistic model of the contact interfaces with adhesion , 1999 .

[204]  E. Lorentz,et al.  A mixed interface finite element for cohesive zone models , 2008 .

[205]  Izhak Etsion,et al.  Adhesion Model for Metallic Rough Surfaces , 1988 .

[206]  U. B. Jayadeep,et al.  Energy loss due to adhesion in longitudinal impact of elastic cylinders , 2014 .

[207]  K. Ono Numerical Method of Analyzing Contact Mechanics between a Sphere and a Flat Considering Lennard-Jones Surface Forces of Contacting Asperities and Noncontacting Rough Surfaces , 2010 .

[208]  W. Carpenter Viscoelastic analysis of bonded connections , 1990 .

[209]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[210]  Bharat Bhushan,et al.  The adhesion model considering capillarity for gecko attachment system , 2008, Journal of The Royal Society Interface.

[211]  J. Hendrickx,et al.  A spectral scheme for the simulation of dynamic mode 3 delamination of thin films , 2005 .

[212]  Jerzy Rojek,et al.  Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part I – General developments , 2001 .

[213]  P. Guduru Detachment of a rigid solid from an elastic wavy surface: Theory , 2007 .

[214]  A. Waas,et al.  Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite , 2006 .

[215]  L. E. Scriven,et al.  Pendular rings between solids: meniscus properties and capillary force , 1975, Journal of Fluid Mechanics.

[216]  L. Mahadevan,et al.  Peeling from a biomimetically patterned thin elastic film , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[217]  A. Lew,et al.  Effective macroscopic adhesive contact behavior induced by small surface roughness , 2011 .

[218]  Mark R. Cutkosky,et al.  Biologically inspired climbing with a hexapedal robot , 2008, J. Field Robotics.

[219]  Roger A. Sauer,et al.  Stabilized finite element formulations for liquid membranes and their application to droplet contact , 2014 .

[220]  A. Volokitin,et al.  On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[221]  Yujie Wei A stochastic description on the traction-separation law of an interface with non-covalent bonding , 2014 .

[222]  M. D. Thouless,et al.  Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation , 1999 .

[223]  I. Ashcroft,et al.  Modelling interfacial degradation using interfacial rupture elements , 2003 .

[224]  I. Etsion,et al.  Loading-unloading of an elastic-plastic adhesive spherical microcontact. , 2008, Journal of colloid and interface science.

[225]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[226]  Elio Sacco,et al.  A delamination model for laminated composites , 1996 .

[227]  I. Lubowiecka,et al.  Experimentation, material modelling and simulation of bonded joints with a flexible adhesive , 2012 .

[228]  B. N. J. Perssona On the mechanism of adhesion in biological systems , 2003 .

[229]  Peter Wriggers,et al.  Thermo-mechanical behaviour of rubber materials during vulcanization , 2005 .

[230]  Yung C. Shin,et al.  Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics , 2011 .

[231]  A. Curnier,et al.  A model of adhesion coupled to contact and friction , 2003 .

[232]  Mohammad Shavezipur,et al.  A finite element technique for accurate determination of interfacial adhesion force in MEMS using electrostatic actuation , 2011 .

[233]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[234]  Peter Wriggers,et al.  Formulation and analysis of a three-dimensional finite element implementation for adhesive contact at the nanoscale , 2009 .

[235]  Mengjie Wu,et al.  Analysis on Adhesive Contact of Micro-Columns , 2012 .

[236]  P Bongrand,et al.  Cell adhesion. Competition between nonspecific repulsion and specific bonding. , 1984, Biophysical journal.

[237]  R. Fearing,et al.  Simulation of synthetic gecko arrays shearing on rough surfaces , 2014, Journal of The Royal Society Interface.

[238]  B. Nadler,et al.  Decohesion of a rigid punch from non-linear membrane undergoing finite axisymmetric deformation , 2008 .

[239]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[240]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[241]  Nicola Pugno,et al.  Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability , 2011 .

[242]  M. Cocu,et al.  Existence Results for Unilateral Quasistatic Contact Problems With Friction and Adhesion , 2000 .

[243]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[244]  Paul Steinmann,et al.  A finite strain framework for the simulation of polymer curing. Part I: elasticity , 2009 .

[245]  D. Maugis Adherence of elastomers: Fracture mechanics aspects , 1987 .

[246]  C. Zhu,et al.  Kinetics and mechanics of cell adhesion. , 2000, Journal of biomechanics.

[247]  A. Waas,et al.  Adaptive shape functions and internal mesh adaptation for modeling progressive failure in adhesively bonded joints , 2014 .

[248]  Shaofan Li,et al.  Modelling and simulation of substrate elasticity sensing in stem cells , 2011, Computer methods in biomechanics and biomedical engineering.

[249]  M Mohammad Samimi,et al.  An enriched cohesive zone model for delamination in brittle interfaces , 2009 .

[250]  Henry C Wong,et al.  Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration. , 2011, Journal of biomechanics.

[251]  Z. X. Lu,et al.  Effect of interfacial slippage in peel test: Theoretical model , 2007, The European physical journal. E, Soft matter.

[252]  Simulation of a Bio-Adhesion System with Viscoelasticity , 2011 .

[253]  M. D. Thouless,et al.  The effects of shear on delamination in layered materials , 2004 .

[254]  Roger A. Sauer,et al.  A contact mechanics model for quasi‐continua , 2007 .

[255]  Kyriakos Komvopoulos,et al.  Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory , 2003 .

[256]  W. Han,et al.  Analysis and Approximation of Contact Problems with Adhesion or Damage , 2005 .

[257]  Riccarda Rossi,et al.  Thermal effects in adhesive contact: modelling and analysis , 2009, 0909.2176.

[258]  Bharat Bhushan,et al.  Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface , 2007 .

[259]  S. Suresh Fatigue of materials , 1991 .

[260]  U. B. Jayadeep,et al.  Energy Loss in the Impact of Elastic Spheres on a Rigid Half-Space in Presence of Adhesion , 2013, Tribology Letters.

[261]  Mircea Sofonea,et al.  Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion , 2003 .

[262]  Roger A. Sauer,et al.  A computational contact model for nanoscale rubber adhesion , 2009 .

[263]  F. Vernerey,et al.  An XFEM‐based numerical strategy to model mechanical interactions between biological cells and a deformable substrate , 2012 .

[264]  K. Wan,et al.  Confined Thin Film Delamination in the Presence of Intersurface Forces With Finite Range and Magnitude , 2009 .

[265]  N. McGruer,et al.  A Combined Molecular Dynamics and Finite Element Analysis of Contact and Adhesion of a Rough Sphere and a Flat Surface , 2011 .

[266]  L. E. Scriven,et al.  Static drop on an inclined plate: Analysis by the finite element method , 1980 .

[267]  C. Hui,et al.  Axisymmetric membrane in adhesive contact with rigid substrates: Analytical solutions under large deformation , 2012 .

[268]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[269]  Sung-San Cho,et al.  Finite element modeling of adhesive contact using molecular potential , 2004 .

[270]  P. Sahoo,et al.  Adhesive friction for elastic–plastic contacting rough surfaces using a scale-dependent model , 2006 .

[271]  Stanimir Iliev,et al.  Iterative method for the shape of static drops , 1995 .

[272]  R. S. Bradley,et al.  LXXIX. The cohesive force between solid surfaces and the surface energy of solids , 1932 .

[273]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[274]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[275]  Scott R. White,et al.  Process Modeling of Composite Materials: Residual Stress Development during Cure. Part I. Model Formulation , 1992 .

[276]  K. Sung,et al.  Theoretical and experimental studies on cross-bridge migration during cell disaggregation. , 1989, Biophysical journal.

[277]  Bent F. Sørensen,et al.  Cohesive law and notch sensitivity of adhesive joints , 2002 .

[278]  Rafael Tadmor,et al.  LETTER TO THE EDITOR: The London-van der Waals interaction energy between objects of various geometries , 2001 .

[279]  M. Müser,et al.  Contact mechanics of real vs. randomly rough surfaces: A Green's function molecular dynamics study , 2007 .

[280]  B. Galanov Models of adhesive contact between rough elastic solids , 2011 .

[281]  Roger A. Sauer,et al.  A Computational Model for Nanoscale Adhesion between Deformable Solids and Its Application to Gecko Adhesion , 2010 .

[282]  Bharat Bhushan,et al.  Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion' , 2006 .

[283]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[284]  P. Steinmann,et al.  Modelling and computation of curing and damage of thermosets , 2012 .

[285]  J. A. Sanz-Herrera,et al.  Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives , 2011, International journal of molecular sciences.

[286]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[287]  R. Jackson,et al.  A model for the liquid-mediated collapse of 2-D rough surfaces , 2009 .

[288]  Qiang Yao,et al.  Adhesive particulate flow: The discrete-element method and its application in energy and environmental engineering , 2011 .

[289]  B. Persson,et al.  Adhesion between elastic bodies with rough surfaces , 2002 .

[290]  J. Cognard,et al.  On Modelling the Non-linear Behaviour of Thin Adhesive Films in Bonded Assemblies With Interface Elements , 2008 .

[291]  Roger A. Sauer,et al.  A COMPOSITE TIME INTEGRATION SCHEME FOR DYNAMIC ADHESION AND ITS APPLICATION TO GECKO SPATULA PEELING , 2014 .

[292]  N. Sottos,et al.  Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films , 2008 .

[293]  James E. Martin,et al.  Calculation of Stresses in Crosslinking Polymers , 1996 .

[294]  Max D. Gunzburger,et al.  Simulating vesicle-substrate adhesion using two phase field functions , 2014, J. Comput. Phys..

[295]  Jae-Seob Kwak,et al.  A review of adhesion and friction models for gecko feet , 2010 .

[296]  Anders Klarbring,et al.  Asymptotic Modelling of Adhesive Joints , 1998 .

[297]  Parker,et al.  Deformation and adhesion of elastic bodies in contact. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[298]  D. Quesnel,et al.  Finite Element Modeling of Particle Adhesion: A Surface Energy Formalism , 2000 .

[299]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[300]  R. D. Gibson,et al.  The elastic contact of a rough surface , 1975 .

[301]  J. Oden,et al.  Computational micro- and macroscopic models of contact and friction: formulation, approach and applications , 1998 .

[302]  B. Bhushan,et al.  Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts , 2008 .

[303]  Philippe H. Geubelle,et al.  Multiscale cohesive failure modeling of heterogeneous adhesives , 2008 .

[304]  R. Adams,et al.  Single Lap Joints with Rounded Adherend Corners: Experimental Results and Strength Prediction , 2011 .

[305]  Q. Yao,et al.  On the applicability of different adhesion models in adhesive particulate flows , 2010 .

[306]  Adam S. Foster,et al.  Towards an accurate description of the capillary force in nanoparticle-surface interactions , 2005 .

[307]  J. Streator,et al.  A Liquid Bridge Between Two Elastic Half-Spaces: A Theoretical Study of Interface Instability , 2004 .

[308]  Elio Sacco,et al.  Delamination of beams: an application to the DCB specimen , 1996 .

[309]  Larsgunnar Nilsson,et al.  Modeling of delamination using a discretized cohesive zone and damage formulation , 2002 .

[310]  A. Castellanos,et al.  Adhesive elastic plastic contact: theory and numerical simulation , 2007 .

[311]  R. Sauer,et al.  Multiscale treatment of mechanical contact problems involving thin polymeric layers , 2014 .

[312]  C. Hui,et al.  Large deformation adhesive contact mechanics of circular membranes with a flat rigid substrate , 2010 .

[313]  Roger A. Sauer,et al.  A computational contact formulation based on surface potentials , 2013 .

[314]  J. J. Kauzlarich,et al.  The influence of peel angle on the mechanics of peeling flexible adherends with arbitrary load–extension characteristics , 2005 .

[315]  C. Weißenfels Contact methods integrating plasticity models with application to soil mechanics , 2013 .

[316]  U. Edlund,et al.  Analysis of elastic and elastic-plastic adhesive joints using a mathematical programming approach , 1990 .

[317]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[318]  O. Allix,et al.  Interlaminar interface modelling for the prediction of delamination , 1992 .

[319]  Zenon Mróz,et al.  Constitutive model of adhesive and ploughing friction in metal-forming processes , 1998 .

[320]  Michel Raous,et al.  A dynamic unilateral contact problem with adhesion and friction in viscoelasticity , 2010 .

[321]  Theja Reddy,et al.  Viscoelastic analysis of adhesively bonded joints , 1987 .

[322]  Michele Ciavarella,et al.  A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces , 2006 .

[323]  Jeongho Ahn,et al.  Thick obstacle problems with dynamic adhesive contact , 2008 .

[324]  Meir Shillor,et al.  A Membrane in Adhesive Contact , 2003, SIAM J. Appl. Math..

[325]  P. Wriggers,et al.  NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding , 2014 .

[326]  M. Aliabadi,et al.  The boundary element analysis of cracked stiffened sheets, reinforced by adhesively bonded patches , 1998 .

[327]  Sinisa Dj. Mesarovic,et al.  Adhesive contact of elastic–plastic spheres , 2000 .

[328]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[329]  A. Klarbring,et al.  A coupled elastic-plastic damage model for rubber-modified epoxy adhesives , 1993 .

[330]  W. Shyy,et al.  Computational modeling of cell adhesion and movement using a continuum-kinetics approach. , 2003, Biophysical journal.

[331]  Ki Myung Lee,et al.  Crystallite coalescence during film growth based on improved contact mechanics adhesion models , 2004 .

[332]  Bin Chen,et al.  Pre-tension generates strongly reversible adhesion of a spatula pad on substrate , 2009, Journal of The Royal Society Interface.