Sharp Bounds for Optimal Decoding of Low-Density Parity-Check Codes
暂无分享,去创建一个
[1] 西森 秀稔. Statistical physics of spin glasses and information processing : an introduction , 2001 .
[2] Nicolas Macris,et al. Sharp Bounds on Generalized EXIT Functions , 2007, IEEE Transactions on Information Theory.
[3] F. Guerra. Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.
[4] M. Talagrand. The parisi formula , 2006 .
[5] Igal Sason,et al. On Achievable Rates and Complexity of LDPC Codes Over Parallel Channels: Bounds and Applications , 2007, IEEE Transactions on Information Theory.
[6] Igal Sason,et al. Parity-Check Density Versus Performance of Binary Linear Block Codes: New Bounds and Applications , 2007, IEEE Transactions on Information Theory.
[7] M. Mézard,et al. Spin Glass Theory and Beyond , 1987 .
[8] S. Kudekar,et al. Decay of correlations: An application to low-density parity check codes , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.
[9] Michele Leone,et al. Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .
[10] H. Nishimori. Statistical Physics of Spin Glasses and Information Processing , 2001 .
[11] Nicolas Macris,et al. Correlation inequalities: a useful tool in the theory of LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[12] Saad,et al. Typical performance of gallager-type error-correcting codes , 2000, Physical review letters.
[13] M. Talagrand,et al. Bounds for diluted mean-fields spin glass models , 2004, math/0405357.
[14] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[15] Rüdiger L. Urbanke,et al. Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.
[16] Andrea Montanari,et al. Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.
[17] Nicolas Macris,et al. Proof of replica formulas in the high noise regime for communication using LDGM codes , 2008, 2008 IEEE Information Theory Workshop.
[18] Pisa,et al. Quadratic replica coupling in the Sherrington-Kirkpatrick mean field spin glass model , 2002, cond-mat/0201091.
[19] Andrea Montanari,et al. Maxwell's construction: the hidden bridge between maximum-likelihood and iterative decoding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[20] Andrea Montanari,et al. Asymptotic Rate versus Design Rate , 2007, 2007 IEEE International Symposium on Information Theory.
[21] Nicolas Macris,et al. Sharp Bounds for MAP Decoding of General Irregular LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[22] Nicolas Macris,et al. Exact solution of a p-spin model and its relationship to error correcting codes , 2006, 2006 IEEE International Symposium on Information Theory.
[23] D. Burshtein,et al. Upper bounds on the rate of LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[24] Nicolas Macris,et al. Exact solution for the conditional entropy of Poissonian LDPC codes over the Binary Erasure Channel , 2007, 2007 IEEE International Symposium on Information Theory.
[25] Igal Sason,et al. On Universal Properties of Capacity-Approaching LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.
[26] M. Talagrand,et al. Spin Glasses: A Challenge for Mathematicians , 2003 .
[27] Andrea Montanari,et al. Tight bounds for LDPC and LDGM codes under MAP decoding , 2004, IEEE Transactions on Information Theory.
[28] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[29] A. Montanari. The glassy phase of Gallager codes , 2001, cond-mat/0104079.
[30] Nicolas Macris,et al. Decay of Correlations for Sparse Graph Error Correcting Codes , 2011, SIAM J. Discret. Math..
[31] Nicolas Macris,et al. Griffith–Kelly–Sherman Correlation Inequalities: A Useful Tool in the Theory of Error Correcting Codes , 2007, IEEE Transactions on Information Theory.