Analysis of a meshless method for the time fractional diffusion-wave equation

In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is O(τ3−α)$\mathcal {O}(\tau ^{3-\alpha })$. Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when β→+∞$\beta \rightarrow +\infty $ solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is O(h)$\mathcal {O}(h)$. In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.

[1]  W. Wyss The fractional diffusion equation , 1986 .

[2]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[3]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[4]  Mehdi Dehghan,et al.  The numerical solution of the non-linear integro-differential equations based on the meshless method , 2012, J. Comput. Appl. Math..

[5]  Xuan Zhao,et al.  Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium , 2014, Journal of Scientific Computing.

[6]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[7]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[8]  M. Dehghan,et al.  THE SOLUTION OF THE LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE HOMOTOPY ANALYSIS METHOD , 2010 .

[9]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[10]  Mehdi Dehghan,et al.  A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation , 2010, Comput. Phys. Commun..

[11]  Mehdi Dehghan,et al.  A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation , 2012 .

[12]  Shahrokh Esmaeili,et al.  Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials , 2011, Comput. Math. Appl..

[13]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[14]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[15]  Yong Duan,et al.  Meshless Galerkin method based on regions partitioned into subdomains , 2005, Appl. Math. Comput..

[16]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[17]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[18]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[19]  Xiaolin Li,et al.  A Galerkin boundary node method and its convergence analysis , 2009 .

[20]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[21]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[22]  Santos B. Yuste,et al.  An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .

[23]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[24]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[25]  I. Podlubny Fractional differential equations , 1998 .

[26]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[27]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[28]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[29]  Mehdi Dehghan,et al.  A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, J. Comput. Phys..

[30]  Xiaolin Li,et al.  Meshless Galerkin algorithms for boundary integral equations with moving least square approximations , 2011 .

[31]  M. Urner Scattered Data Approximation , 2016 .

[32]  Jichun Li,et al.  Computational Partial Differential Equations Using MATLAB , 2008 .

[33]  Youngjoon Hong,et al.  Numerical Approximation of the Singularly Perturbed Heat Equation in a Circle , 2014, J. Sci. Comput..

[34]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[35]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[36]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[37]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[38]  E. J. Kansa,et al.  Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .

[39]  Fawang Liu,et al.  A RBF meshless approach for modeling a fractal mobile/immobile transport model , 2014, Appl. Math. Comput..

[40]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[41]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[42]  E. Kansa,et al.  Numerical simulation of two-dimensional combustion using mesh-free methods , 2009 .

[43]  S. Momani,et al.  Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics , 2007 .

[44]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[45]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[46]  D. Mirzaei A meshless based method for solution of integral equations , 2010, 1508.07539.

[47]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[48]  Zaid M. Odibat,et al.  Computational algorithms for computing the fractional derivatives of functions , 2009, Math. Comput. Simul..

[49]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[50]  Mehdi Dehghan,et al.  The use of compact boundary value method for the solution of two-dimensional Schrödinger equation , 2009 .

[51]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[52]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[53]  Mehdi Dehghan,et al.  A new operational matrix for solving fractional-order differential equations , 2010, Comput. Math. Appl..

[54]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[55]  Na Liu,et al.  An implicit MLS meshless method for 2-D time dependent fractional diffusion–wave equation , 2015 .

[56]  Zhijie Cai,et al.  Convergence and error estimates for meshless Galerkin methods , 2007, Appl. Math. Comput..

[57]  YuanTong Gu,et al.  AN ADVANCED MESHLESS METHOD FOR TIME FRACTIONAL DIFFUSION EQUATION , 2011 .

[58]  J. March Introduction to the Calculus of Variations , 1999 .

[59]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..