Modelling Excesses over High Thresholds, with an Application

In many areas of application the extremes of some process may be modelled by considering only its exceedances of a high threshold level. The natural parametric family for such excesses for continuous parent random variables, the generalized Pareto distribution, is closely related to the classical extreme-value distributions. Here its basic properties are discussed, with some ideas for graphical exploration of data. Maximum likelihood estimation of parameters in the presence of covariates is considered, and techniques for checking fit based on residuals and a score test developed.

[1]  David R. Cox,et al.  Further Results on Tests of Separate Families of Hypotheses , 1962 .

[2]  H. ApSimon,et al.  Long-range atmospheric dispersion of radioisotopes—i. The MESOS model , 1985 .

[3]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[4]  D. Cox,et al.  A General Definition of Residuals , 1968 .

[5]  H. ApSimon,et al.  Long-range atmospheric dispersion of radioisotopes—ii. application of the MESOS model , 1985 .

[6]  Michael A. Stephens,et al.  Goodness of fit for the extreme value distribution , 1977 .

[7]  Richard L. Smith Threshold Methods for Sample Extremes , 1984 .

[8]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[9]  Michael L. Feldstein,et al.  The generalized Pareto law as a model for progressively censored survival data , 1979 .

[10]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[11]  G. Box An analysis of transformations (with discussion) , 1964 .

[12]  E. S. Pearson,et al.  THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS , 1952 .

[13]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[14]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[15]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[16]  A. Walden,et al.  Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .

[17]  P. Prescott,et al.  Maximum likeiihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples , 1983 .

[18]  Lionel Weiss,et al.  Asymptotic inference about a density function at an end of its range , 1971 .

[19]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[20]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[21]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[22]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[23]  Anthony C. Atkinson,et al.  Testing Transformations to Normality , 1973 .

[24]  David R. Cox,et al.  On test statistics calculated from residuals , 1971 .