Effect of hybrid filling with short glass fibers and expanded graphite on structure, rheological and mechanical properties of poly(ethylene terephthalate)

[1]  V. V. Dubrovsky,et al.  Morphology and properties of poly(ethylene terephthalate) and thermoplastic polyester elastomer blends modified in the melt by a diisocyanate chain extender and filled with a short glass fiber , 2018 .

[2]  I. O. Volkov,et al.  Structural and frictional peculiarities of nanocrystalline thermally expanded graphite particles sonicated in water and glycerol , 2017 .

[3]  A. Pegoretti,et al.  Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets , 2016 .

[4]  T. Mallouk,et al.  Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. , 2014, Nature chemistry.

[5]  Y. Ling,et al.  Graphene-Based Nanomaterials as Heterogeneous Acid Catalysts: A Comprehensive Perspective , 2014, Molecules.

[6]  A. Pegoretti,et al.  Synergistic effect of exfoliated graphite nanoplatelets and short glass fiber on the mechanical and interfacial properties of epoxy composites , 2014 .

[7]  C. Macosko,et al.  Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes , 2014 .

[8]  T. Tanaka,et al.  Mechanical properties of injection-molded carbon fiber/polypropylene composites hybridized with nanofillers , 2013 .

[9]  T. Czigány,et al.  Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid nanocomposite , 2013 .

[10]  E. Lafranche,et al.  Injection moulding of long glass fibre reinforced poly(ethylene terephtalate): Influence of carbon black and nucleating agents on impact properties , 2012 .

[11]  M. Clifford,et al.  Fibre reinforced nanocomposites: Mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites , 2010 .

[12]  P. Zahedi,et al.  An Investigation on the Rheology, Morphology, Thermal and Mechanical Properties of Recycled Poly (ethylene terephthalate) Reinforced With Modified Short Glass Fibers , 2009 .

[13]  Hua-ming Li,et al.  In situ preparation of poly(ethylene terephthalate)-SiO2 nanocomposites , 2006 .

[14]  Firas Awaja,et al.  Recycling of PET , 2005 .

[15]  L. Mei,et al.  The influence of extrusion variables on the interfacial adhesion and mechanical properties of recycled PET composites , 2005 .

[16]  T. D. Fornes,et al.  Crystallization behavior of nylon 6 nanocomposites , 2003 .

[17]  J. Thomason Micromechanical parameters from macromechanical measurements on glass-reinforced polybutyleneterepthalate , 2002 .

[18]  E. Wintermantel,et al.  An energy-based analytical push-out model applied to characterise the interfacial properties of knitted glass fibre reinforced PET , 1998 .

[19]  B. Wunderlich Equilibrium melting of flexible linear macromolecules , 1978 .

[20]  A. Kelly,et al.  Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum , 1965 .

[21]  V. V. Dubrovsky,et al.  Reactive compatibilization in technology of poly(alkylene terephthalate)-based composites: Polyester blends, short fiber-filled materials, and nanomaterials , 2015 .

[22]  V. Agabekov,et al.  Effect of nanodisperse carbon fillers and isocyanate chain extender on structure and properties of poly(ethylene terephthalate) , 2012 .

[23]  Mingshu Yang,et al.  Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension , 2009 .

[24]  G. Kalinka,et al.  A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths , 2001 .