Identifying the human optic radiation using diffusion imaging and fiber tractography.

Measuring the properties of the white matter pathways from retina to cortex in the living human brain will have many uses for understanding visual performance and guiding clinical treatment. For example, identifying the Meyer's loop portion of the optic radiation (OR) has clinical significance because of the large number of temporal lobe resections. We use diffusion tensor imaging and fiber tractography (DTI-FT) to identify the most likely pathway between the lateral geniculate nucleus (LGN) and the calcarine sulcus in sixteen hemispheres of eight healthy volunteers. Quantitative population comparisons between DTI-FT estimates and published postmortem dissections match with a spatial precision of about 1 mm. The OR can be divided into three bundles that are segmented based on the direction of the fibers as they leave the LGN: Meyer's loop, central, and direct. The longitudinal and radial diffusivities of the three bundles do not differ within the measurement noise; there is a small difference in the radial diffusivity between the right and left hemispheres. We find that the anterior tip of Meyer's loop is 28 +/- 3 mm posterior to the temporal pole, and the population range is 1 cm. Hence, it is important to identify the location of this bundle in individual subjects or patients.

[1]  Takashi Hanakawa,et al.  Early Experience with 3-T Magnetic Resonance Tractography in the Surgery of Cerebral Arteriovenous Malformations in and around the Visual Pathway , 2006, Neurosurgery.

[2]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Xiaoguang Tong,et al.  Three-dimensional Relationships of The Optic Radiation , 2005, Neurosurgery.

[4]  Saleem I Abdulrauf,et al.  White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. , 2004, Journal of neurosurgery.

[5]  K Togashi,et al.  Diffusion tensor fiber tractography of the optic radiation: analysis with 6-, 12-, 40-, and 81-directional motion-probing gradients, a preliminary study. , 2007, AJNR. American journal of neuroradiology.

[6]  Geoff J M Parker,et al.  Optic radiation changes after optic neuritis detected by tractography‐based group mapping , 2005, Human brain mapping.

[7]  C. Destrieux,et al.  Optic radiations: a microsurgical anatomical study. , 2006, Journal of neurosurgery.

[8]  Anthony J. Sherbondy,et al.  ConTrack: finding the most likely pathways between brain regions using diffusion tractography. , 2008, Journal of vision.

[9]  Carl-Fredrik Westin,et al.  Uncertainty in White Matter Fiber Tractography , 2005, MICCAI.

[10]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[11]  A. Rhoton,et al.  THE OPTIC RADIATION , 2005 .

[12]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[13]  J. S. Duncan,et al.  MR tractography predicts visual field defects following temporal lobe resection , 2005, Neurology.

[14]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[15]  P Krolak-Salmon,et al.  Anatomy of optic nerve radiations as assessed by static perimetry and MRI after tailored temporal lobectomy , 2000, The British journal of ophthalmology.

[16]  R. Kikinis,et al.  Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts , 1998, Brain Research.

[17]  Neil R Miller Diffusion tensor imaging of the visual sensory pathway: are we there yet? , 2005, American journal of ophthalmology.

[18]  Ugur Türe,et al.  Impact of temporal lobe surgery. , 2004, Journal of neurosurgery.

[19]  P. Basser,et al.  Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI , 2004, Magnetic resonance in medicine.

[20]  Carlo Pierpaoli,et al.  Estimating intensity variance due to noise in registered images: Applications to diffusion tensor MRI , 2005, NeuroImage.

[21]  G. Rees Statistical Parametric Mapping , 2004, Practical Neurology.

[22]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[23]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[24]  Tsunehiko Nishimura,et al.  Tractography to depict three layers of visual field trajectories to the calcarine gyri. , 2005, American journal of ophthalmology.

[25]  U. Ebeling,et al.  Neurosurgical topography of the optic radiation in the temporal lobe , 2005, Acta Neurochirurgica.

[26]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[27]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[28]  Derek K. Jones,et al.  Occipito-temporal connections in the human brain. , 2003, Brain : a journal of neurology.

[29]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[30]  Timothy Edward John Behrens,et al.  A Bayesian framework for global tractography , 2007, NeuroImage.

[31]  Toshiaki Taoka,et al.  Diffusion tensor imaging in cases with visual field defect after anterior temporal lobectomy. , 2005, AJNR. American journal of neuroradiology.

[32]  J. Clarke,et al.  Medicine , 1907, Bristol medico-chirurgical journal.

[33]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[34]  Frédéric Leuret,et al.  Anatomie comparée du système nerveux considéré dans ses rapports avec l'intelligence , 1839 .

[35]  Daniel Nilsson,et al.  Intersubject variability in the anterior extent of the optic radiation assessed by tractography , 2007, Epilepsy Research.

[36]  K Togashi,et al.  Diffusion Tensor Fiber Tractography for Arteriovenous Malformations: Quantitative Analyses to Evaluate the Corticospinal Tract and Optic Radiation , 2007, American Journal of Neuroradiology.

[37]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[38]  Brian A. Wandell,et al.  Exploring connectivity of the brain's white matter with dynamic queries , 2005, IEEE Transactions on Visualization and Computer Graphics.

[39]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[40]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[41]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[42]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[43]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[44]  Dhananjay Ghongade,et al.  Neuroradiology , 2007, Indian Journal of Radiology and Imaging.

[45]  Albert L. Rhoton,et al.  Meyer’s Loop and the Optic Radiations in the Transsylvian Approach to the Mediobasal Temporal Lobe , 2006, Neurosurgery.

[46]  Xiaoguang Tong,et al.  Three-dimensional relationships of the optic radiation. Commentary , 2005 .

[47]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.