A Theoretical Investigation of the Catalytic Decomposition of Hydroxylamine Nitrate on Ir(110) Surface

[1]  K. Batra,et al.  Quantum control of optoelectronic and thermodynamic properties of dopamine molecule in external electric field : A DFT and TD-DFT study , 2023, Computational and Theoretical Chemistry.

[2]  Faizan Ullah,et al.  DFT study about capturing of toxic sulfur gases over cyclic tetrapyrrole , 2023, Computational and Theoretical Chemistry.

[3]  Shantong Li,et al.  DFT study on decomposition of hydrazine nitrate on Ir(1 0 0) surface , 2022, Computational and Theoretical Chemistry.

[4]  A. Shraim,et al.  Density functional theory study on the catalytic dehydrogenation of methane on MoO3 (0 1 0) surface , 2022, Computational and Theoretical Chemistry.

[5]  Baole Li,et al.  Catalytic decomposition of hydroxylamine nitrate and hydrazine nitrate using Ru/ZSM-5 catalyst under mild reaction conditions , 2022, RSC advances.

[6]  Sejin Kwon,et al.  Scaling of catalyst bed for hydrogen peroxide monopropellant thrusters using catalytic decomposition modeling , 2021 .

[7]  R. Savino,et al.  Design and testing of a monopropellant thruster based on N2O decomposition in Pd/Al2O3 pellets catalytic bed , 2021 .

[8]  Jun Liu,et al.  Numerical simulation of the transient process of monopropellant rocket engines , 2020 .

[9]  Yong Yang,et al.  Hydrogen Adsorption on Ir(111), Ir(100) and Ir(110)—Surface and Coverage Dependence , 2020 .

[10]  De-chuan Sun,et al.  Simplified numerical simulation model for hydroxyl ammonium nitrate-based monopropellant rocket engines , 2019 .

[11]  M. Koshi,et al.  Decomposition Pathways for Aqueous Hydroxylammonium Nitrate Solutions: a DFT Study , 2017 .

[12]  C. Oommen,et al.  Adsorption and decomposition of monopropellant molecule HAN on Pd(100) and Ir(100) surfaces: A DFT study , 2016 .

[13]  Robert K. Masse,et al.  Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine , 2014 .

[14]  Steven P. Berg,et al.  Decomposition of Monopropellant Blends of Hydroxylammonium Nitrate and Imidazole-Based Ionic Liquid Fuels , 2013 .

[15]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[16]  J. L. D. Da Silva,et al.  Theory of nitride oxide adsorption on transition metal (111) surfaces: a first-principles investigation. , 2010, Physical chemistry chemical physics : PCCP.

[17]  Malika Kumarasiri,et al.  Anharmonic effects in ammonium nitrate and hydroxylammonium nitrate clusters. , 2007, Journal of Physical Chemistry B.

[18]  Tao Zhang,et al.  Catalytic Decomposition of Hydroxyl Ammonium Nitrate at Room Temperature , 2007 .

[19]  D. King,et al.  Step-enhanced selectivity of NO reduction on platinum-group metals. , 2003, Journal of the American Chemical Society.

[20]  B. Shaw,et al.  STUDIES OF HAN-BASED MONOPROPELLANT DROPLET COMBUSTION , 2002 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  T. W. Lee,et al.  Separated-flow considerations for pressure-atomized combusting monopropellant sprays , 1989 .

[23]  Chung King Law,et al.  Aerothermochemical studies of energetic liquid materials: 1. Combustion of HAN-based liquid gun propellants under atmospheric pressure , 1987 .

[24]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .