The Complexity of the List Partition Problem for Graphs

The $k$-partition problem is as follows: Given a graph $G$ and a positive integer $k$, partition the vertices of $G$ into at most $k$ parts $A_1, A_2, \ldots , A_k$, where it may be specified that $A_i$ induces a stable set, a clique, or an arbitrary subgraph, and pairs $A_i, A_j (i \neq j)$ be completely nonadjacent, completely adjacent, or arbitrarily adjacent. The list $k$-partition problem generalizes the $k$-partition problem by specifying for each vertex $x$, a list $L(x)$ of parts in which it is allowed to be placed. Many well-known graph problems can be formulated as list $k$-partition problems: e.g., 3-colorability, clique cutset, stable cutset, homogeneous set, skew partition, and 2-clique cutset. We classify, with the exception of two polynomially equivalent problems, each list 4-partition problem as either solvable in polynomial time or NP-complete. In doing so, we provide polynomial-time algorithms for many problems whose polynomial-time solvability was open, including the list 2-clique cutset problem. This also allows us to classify each list generalized 2-clique cutset problem and list generalized skew partition problem as solvable in polynomial time or NP-complete.

[1]  Daniel Král,et al.  Two algorithms for general list matrix partitions , 2005, SODA '05.

[2]  S. Whitesides A Method for Solving Certain Graph Recognition and Optimization Problems, with Applications to Perfect Graphs , 1982 .

[3]  Pavol Hell,et al.  Digraph matrix partitions and trigraph homomorphisms , 2006, Discret. Appl. Math..

[4]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[5]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[6]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[7]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[8]  Sulamita Klein,et al.  List Partitions , 2003, SIAM J. Discret. Math..

[9]  Sue Whitesides,et al.  An Algorithm for Finding Clique Cut-Sets , 1981, Inf. Process. Lett..

[10]  Andreas Brandstädt Partitions of graphs into one or two independent sets and cliques , 1996, Discret. Math..

[11]  Yoshiharu Kohayakawa,et al.  Finding Skew Partitions Efficiently , 2000, J. Algorithms.

[12]  Da Silva,et al.  Even-hole-free graphs , 2008 .

[13]  Celina M. H. de Figueiredo,et al.  Extended skew partition problem , 2006, Discret. Math..

[14]  P. Hell,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003 .

[15]  Sulamita Klein,et al.  List matrix partitions of chordal graphs , 2005, Theor. Comput. Sci..

[16]  Yoshiharu Kohayakawa,et al.  Finding Skew Partitions Efficiently , 2000, J. Algorithms.

[17]  Pavol Hell,et al.  Full Constraint Satisfaction Problems , 2006, SIAM J. Comput..

[18]  P. Hell,et al.  Generalized Colourings (Matrix Partitions) of Cographs , 2006 .

[19]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[20]  Alan Tucker Coloring graphs with stable cutsets , 1983, J. Comb. Theory, Ser. B.

[21]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[22]  Celina M. H. de Figueiredo,et al.  Finding H-partitions efficiently , 2005, RAIRO Theor. Informatics Appl..

[23]  Vasek Chvátal,et al.  Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.

[24]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[25]  Sophie Tison Trees in Algebra and Programming — CAAP'94 , 1994, Lecture Notes in Computer Science.

[26]  Celina M. H. de Figueiredo,et al.  Stable skew partition problem , 2004, Discret. Appl. Math..

[27]  Andreas Brandstädt,et al.  The Complexity of some Problems Related to Graph 3-colorability , 1998, Discret. Appl. Math..

[28]  Kathie Cameron,et al.  The list partition problem for graphs , 2004, SODA '04.

[29]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[30]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .