Evolution of iron-based raw materials and their effect on the properties of MgO-Al-C slide plate materials

[1]  Kai Shi,et al.  Mechanical properties and microstructure evolution of MgO–Al–C slide plate refractories in presence of Al powder-modified magnesia aggregates , 2021, Ceramics International.

[2]  Chao Zhou,et al.  Preparation and application of ZrB2-SiCw composite powder for corrosion resistance improvement in Al2O3–ZrO2–C slide plate materials , 2020 .

[3]  Q. Jia,et al.  Synthesis of MgO–MgAl2O4 refractory aggregates for application in MgO–C slide plate , 2019 .

[4]  Min Chen,et al.  Effect of Fe addition on the microstructure and oxidation behavior of MgO–C refractory , 2019 .

[5]  Min Chen,et al.  High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere , 2019, Ceramics International.

[6]  A. Nemati,et al.  Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin , 2019, Ceramics International.

[7]  Yawei Li,et al.  Strengthening of Al2O3-C slide gate plate refractories with microcrystalline graphite , 2017 .

[8]  Yawei Li,et al.  Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets , 2017 .

[9]  H. G. Dehsheikh,et al.  Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite , 2017 .

[10]  Z. Xiang,et al.  Effect of hercynite content on the properties of magnesia-spinel composite refractories sintered in different atmospheres , 2016 .

[11]  S. Shaji,et al.  Effect of addition of Al2O3 and Fe2O3 nanoparticles on the microstructural and physico-chemical evolution of dense magnesia composite , 2015 .

[12]  S. Behera,et al.  Strengthening of Al2O3-C slide gate plate refractories with expanded graphite , 2015 .

[13]  M. Haldar,et al.  Studies on densification, mechanical, micro-structural and structure–properties relationship of magnesium aluminate spinel refractory aggregates prepared from Indian magnesite , 2015 .

[14]  Zheng-qing Ma,et al.  Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet-modified phenol resin , 2015 .

[15]  G. Falk,et al.  Functionalized Cellular Carbon‐MgO Composites: From Interface Processing to Thermal Shock Resistant Low‐Carbon MgO‐C Refractories , 2014 .

[16]  Marc Labadie,et al.  Interaction between Calcium and Al2O3-ZrO2-C Slide Gate Plates , 2012 .

[17]  Lei Zhao,et al.  Microstructures and mechanical properties of Al2O3–ZrO2–C refractories using silicon, microsilica or their combination as additive , 2012 .

[18]  Jia-lin Sun,et al.  Effects of Nanometer Carbon Black on Performance of Low-Carbon MgO-C Composites , 2010 .

[19]  N. A. Vyatkina,et al.  Oxide-based carbon slide gate plates , 2006 .

[20]  William E Lee,et al.  Synthesis of Magnesium Aluminate Spinel Platelets from α‐Alumina Platelet and Magnesium Sulfate Precursors , 2003 .

[21]  A. E. Zhukovskaya,et al.  The Oxide-Carbon Plates for Slide Gates , 2003 .