Reflector Localization for Geometrical Modeling the Air–Ground Channel

In the air–ground propagation channel, multipath propagation severely affects the performance of the communication, navigation, and surveillance systems used in civil aviation. To gain a deeper understanding of the air–ground channel, we are interested in the locations of objects causing multipath propagation. Therefore, in this paper we propose and experimentally validate an algorithm to localize reflectors causing multipath components based on channel sounding data collected using omnidirectional antennas. The algorithm relies on superresolution parameter estimation and tracking as well as on a localization algorithm. Using both simulations and channel sounding data collected from flight trials, we demonstrate the ability to reliably localize the reflectors causing multipath components.

[1]  David W. Matolak,et al.  Air–Ground Channel Characterization for Unmanned Aircraft Systems—Part I: Methods, Measurements, and Models for Over-Water Settings , 2017, IEEE Transactions on Vehicular Technology.

[2]  Armin Dammann,et al.  Estimation and Modelling of NLoS Time-Variant Multipath for Localization Channel Model in Mobile Radios , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[3]  Thomas Jost,et al.  A Wideband Satellite-to-Indoor Channel Model for Navigation Applications , 2014, IEEE Transactions on Antennas and Propagation.

[4]  E. Gumbel The Return Period of Flood Flows , 1941 .

[5]  W. R. Fried,et al.  Avionics Navigation Systems , 1969 .

[6]  Andreas Lehner Multiptah Channel Modelling for Satellite Navigation Systems - Mehrwegekanalmodellierung für Satellitennavigationssysteme , 2007 .

[7]  Kristine L. Bell,et al.  Posterior CramrRao Bound for Tracking Target Bearing , 2007 .

[8]  Andreas F. Molisch,et al.  Ultra-Wide-Band Propagation Channels , 2009, Proceedings of the IEEE.

[9]  Wei Wang,et al.  Detection and Tracking of Mobile Propagation Channel Paths , 2012, IEEE Transactions on Antennas and Propagation.

[10]  Xuefeng Yin,et al.  Tracking of the temporal behaviour of path components in the radio channel - a comparison between methods , 2008, 2008 Annual IEEE Student Paper Conference.

[11]  Fredrik Tufvesson,et al.  Tracking of Wideband Multipath Components in a Vehicular Communication Scenario , 2016, IEEE Transactions on Vehicular Technology.

[12]  David W. Matolak,et al.  Air–Ground Channel Characterization for Unmanned Aircraft Systems—Part III: The Suburban and Near-Urban Environments , 2017, IEEE Transactions on Vehicular Technology.

[13]  Moe Z. Win,et al.  Evaluation of an ultra-wide-band propagation channel , 2002 .

[14]  Andreas Richter,et al.  Estimation of Radio Channel Parameters , 2005 .

[15]  Uwe-Carsten Fiebig,et al.  Geometric Rules for Terrestrial Radionavigation Multipath Mitigation by Averaging , 2017 .

[16]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[17]  Uwe-Carsten Fiebig,et al.  Measurement of the l-band air-to-ground channel for positioning applications , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Alenka Zajic,et al.  Mobile-to-Mobile Wireless Channels , 2012 .

[19]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[20]  S. Abhyankar Algebraic geometry for scientists and engineers , 1990 .

[21]  David W. Matolak,et al.  Air–Ground Channel Characterization for Unmanned Aircraft Systems Part II: Hilly and Mountainous Settings , 2017, IEEE Transactions on Vehicular Technology.

[22]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[23]  Matthias Patzold,et al.  Mobile Fading Channels , 2003 .

[24]  Chris C. Squires,et al.  Measurement and Characterization of Low-Altitude Air-to-Ground MIMO Channels , 2016, IEEE Transactions on Vehicular Technology.

[25]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[26]  Andreas Richter,et al.  RIMAX-A Flexible Algorithm for Channel Parameter Estimation from Channel Sounding Measurements , 2004 .

[27]  Visa Koivunen,et al.  Detection and Tracking of MIMO Propagation Path Parameters Using State-Space Approach , 2009, IEEE Transactions on Signal Processing.

[28]  D. Shutin,et al.  Delay-Dependent Doppler Probability Density Functions for Vehicle-to-Vehicle Scatter Channels , 2014, IEEE Transactions on Antennas and Propagation.

[29]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[30]  D. W. Matolak,et al.  Air-ground channels & models: Comprehensive review and considerations for unmanned aircraft systems , 2012, 2012 IEEE Aerospace Conference.

[31]  M. Powell The BOBYQA algorithm for bound constrained optimization without derivatives , 2009 .

[32]  Fredrik Tufvesson,et al.  Modeling the Ultra-Wideband Outdoor Channel: Model Specification and Validation , 2010, IEEE Transactions on Wireless Communications.

[33]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[34]  Ulrich Epple,et al.  LDACS: future aeronautical communications for air-traffic management , 2014, IEEE Communications Magazine.

[35]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[36]  Andreas F. Molisch,et al.  Geometry-based directional model for mobile radio channels - principles and implementation , 2003, Eur. Trans. Telecommun..

[37]  Giovanni Del Galdo,et al.  Geometry-Based Channel Modeling for Multi-User MIMO Systems and Applications , 2008 .

[38]  Xuefeng Yin,et al.  Tracking of Time-Variant Radio Propagation Paths Using Particle Filtering , 2008, 2008 IEEE International Conference on Communications.

[39]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.