Analysis and Design of 3-D Potentiostat for Deep Brain Implantable Devices

We present the analysis and design of a 3-D potentiostat, an important part of the next generation of the deep brain implantable devices. The potentiostat with interfacing electrochemical sensor comprises a system for measurement of the concentration of the neurotransmitter molecules. We first introduce the architecture of a 2-D potentiostat implemented as the first-order incremental current-sensing sigma–delta converter. The fabricated design demonstrates a 100 fA sensitivity with dynamic range spanning through six orders of magnitude. The same architecture is transferred into 3-D technology with separate tiers for the analog and digital circuitry. The analysis of the 3-D design reveals that the sensitivity is limited by the TSV-related noise coupling.

[1]  Joungho Kim,et al.  Active circuit to through silicon via (TSV) noise coupling , 2009, 2009 IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems.

[2]  Sherwin E. Hua,et al.  Deep Brain Stimulation: An Evolving Technology , 2008, Proceedings of the IEEE.

[3]  Rob A. Rutenbar,et al.  Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis , 1994, IEEE J. Solid State Circuits.

[4]  Kensall D. Wise,et al.  Wireless integrated microsystems: Wearable and implantable devices for improved health care , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[5]  F. Horak,et al.  Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. , 2011, Archives of neurology.

[6]  Eugenio Culurciello,et al.  Patch-clamp amplifiers on a chip , 2010, Journal of Neuroscience Methods.

[7]  Michael L. Levy,et al.  Vagus Nerve Stimulation , 2008, Proceedings of the IEEE.

[8]  G. Cauwenberghs,et al.  Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Gert Cauwenberghs,et al.  Micropower gradient flow acoustic localizer , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  S.M.R. Hasan Stability Analysis and Novel Compensation of a CMOS Current-Feedback Potentiostat Circuit for Electrochemical Sensors , 2007, IEEE Sensors Journal.

[11]  Graham A. Jullien,et al.  Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Ming Yin,et al.  Listening to Brain Microcircuits for Interfacing With External World—Progress in Wireless Implantable Microelectronic Neuroengineering Devices , 2010, Proceedings of the IEEE.

[13]  Kartikeya Murari,et al.  VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[14]  Gabor C. Temes,et al.  A 16-bit low-voltage CMOS A/D converter , 1987 .

[15]  H. Bergman,et al.  Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. , 1990, Science.

[16]  Emre Salman,et al.  Noise coupling due to through silicon vias (TSVs) in 3-D integrated circuits , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[17]  Eugenio Culurciello,et al.  An Integrated Patch-Clamp Potentiostat With Electrode Compensation , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[18]  Emre Salman,et al.  Signal integrity analysis of a 2-D and 3-D integrated potentiostat for neurotransmitter sensing , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[19]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  N.V. Thakor,et al.  Integrated potentiostat for neurotransmitter sensing , 2005, IEEE Engineering in Medicine and Biology Magazine.

[21]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[22]  Eby G. Friedman,et al.  Three-dimensional Integrated Circuit Design , 2008 .

[23]  Robert V. Shannon,et al.  Cochlear and Brainstem Auditory Prostheses “Neural Interface for Hearing Restoration: Cochlear and Brain Stem Implants” , 2008, Proceedings of the IEEE.

[24]  Peter G Jacobs,et al.  Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. , 2004, Diabetes technology & therapeutics.

[25]  G. Cauwenberghs,et al.  16-channel wide-range VLSI potentiostat array , 2004, IEEE International Workshop on Biomedical Circuits and Systems, 2004..

[26]  A. Benabid Deep brain stimulation for Parkinson’s disease , 2003, Current Opinion in Neurobiology.

[27]  Stéphane Trevin,et al.  The use of gold electrodes in the electrochemical detection of nitric oxide in aqueous solution , 1994 .

[28]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[29]  S. Pamarthy,et al.  Process Integration Considerations for 300 mm TSV Manufacturing , 2009, IEEE Transactions on Device and Materials Reliability.

[30]  Bradley A. Minch,et al.  Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Pedram Mohseni,et al.  A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[32]  J.G. Harris,et al.  A time-based VLSI potentiostat for ion current measurements , 2006, IEEE Sensors Journal.

[33]  M. Conti,et al.  High-frequency fully differential filter using operational amplifiers without common-mode feedback , 1989 .

[34]  C. Mead,et al.  White noise in MOS transistors and resistors , 1993, IEEE Circuits and Devices Magazine.