A synergistic strategy for combining thesaurus-based and corpus-based approaches in building ontology for multilingual search engines

Cross-language search engine as a tool for co-learning multilingual ontology.The methodology for building cross-language search engine.Combining thesaurus-based and corpus-based approaches.Application of a query translation to retrieve multilingual documents.How to evaluate a multilingual information retrieval system. In this article we illustrate a methodology for building cross-language search engine. A synergistic approach between thesaurus-based approach and corpus-based approach is proposed. First, a bilingual ontology thesaurus is designed with respect to two languages: English and Spanish, where a simple bilingual listing of terms, phrases, concepts, and subconcepts is built. Second, term vector translation is used - a statistical multilingual text retrieval techniques that maps statistical information about term use between languages (Ontology co-learning). These techniques map sets of t f id f term weights from one language to another. We also applied a query translation method to retrieve multilingual documents with an expansion technique for phrasal translation. Finally, we present our findings.

[1]  Éric Gaussier,et al.  Towards Automatic Extraction of Monolingual and Bilingual Terminology , 1994, COLING.

[2]  Ophir Frieder,et al.  Information Retrieval: Algorithms and Heuristics , 1998 .

[3]  R. Doyle The American terrorist. , 2001, Scientific American.

[4]  Rong Yang,et al.  Toward the Design of a Recommender System: Visual Clustering and Detecting Community Structure in a Web Usage Network , 2012, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

[5]  Sebastian Ryszard Kruk,et al.  Intelligent Social Semantic Collaborative Filtering Tools in an E-learning Contexts , 2010, IC-AI.

[6]  Olfa Nasraoui,et al.  Evaluating usability and precision of visual search engine , 2010, SpringSim.

[7]  Pasquale Lops,et al.  A Retrieval Model for Personalized Searching Relying on Content-based User Profiles , 2008 .

[8]  Olfa Nasraoui,et al.  Dual Representation of the Semantic User Profile for Personalized Web Search in an Evolving Domain , 2009, AAAI Spring Symposium: Social Semantic Web: Where Web 2.0 Meets Web 3.0.

[9]  Anupam Joshi,et al.  Mining web access logs using a fuzzy relational clustering algorithm based on a robust estimator , 1999, WWW 1999.

[10]  Osmar R. Zaïane,et al.  Building a Recommender Agent for e-Learning Systems , 2002, ICCE.

[11]  Douglas W. Oard Cross-Language Text Retrieval Research in the USA , 1997 .

[12]  Lutz Edzard SOBSERVATIONS ON ASSIMILATORY PROCESSES AND RE-SYLLABIFICATION IN THE LIGHT OF OPTIMALITY THEORY * , 2000 .

[13]  Olfa Nasraoui,et al.  Semantic Information Retrieval for Personalized E-Learning , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[14]  Mark W. Davis,et al.  A TREC Evaluation of Query Translation Methods For Multi-Lingual Text Retrieval , 1995, TREC.

[15]  Douglas W. Oard,et al.  A comparative study of query and document translation for cross-language information retrieval , 1998, AMTA.

[16]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[17]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[18]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[19]  W. Bruce Croft,et al.  Cross-lingual relevance models , 2002, SIGIR '02.

[20]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[21]  Douglas W. Oard,et al.  A survey of multilingual text retrieval , 1996 .

[22]  Carol Peters,et al.  Cross-Language Information Retrieval (CLIR) Track Overview , 1997, TREC.

[23]  H. Haddouti Survey: Multilingual Text Retrieval and Access , 1999 .

[24]  Éric Gaussier Flow Network Models for Word Alignment and Terminology Extraction from Bilingual Corpora , 1998, COLING-ACL.

[25]  Sns Rajalakshmi,et al.  A Web Usage Mining Framework for Mining Evolving User Profiles in Dynamic Web Sites , 2012 .

[26]  Leo Obrst,et al.  The Semantic Web: A Guide to the Future of XML, Web Services and Knowledge Management , 2003 .

[27]  W. Bruce Croft,et al.  Dictionary Methods for Cross-Lingual Information Retrieval , 1996, DEXA.

[28]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[29]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[30]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[31]  Julio Gonzalo,et al.  Advances in Cross-Language Information Retrieval , 2002, Lecture Notes in Computer Science.

[32]  Ophir Frieder,et al.  Information Retrieval: Algorithms and Heuristics (The Kluwer International Series on Information Retrieval) , 2004 .

[33]  Olfa Nasraoui,et al.  World Wide Web Personalization , 2005 .

[34]  Kenneth Ward Church,et al.  Identifying Word Correspondences in Parallel Texts , 1991, HLT.

[35]  Leyla ZHUHADAR Model Driven Architecture : How to Remodel an E-learning Web-based System to Be Ready for the Semantic Web ? , 2009 .

[36]  W. Bruce Croft,et al.  Search Engines - Information Retrieval in Practice , 2009 .

[37]  Olfa Nasraoui,et al.  A Hybrid Recommender System Guided by Semantic User Profiles for Search in the E-learning Domain , 2010 .

[38]  Eric Horvitz,et al.  SearchTogether: an interface for collaborative web search , 2007, UIST.

[39]  Olivia R. Liu Sheng,et al.  Interest-based personalized search , 2007, TOIS.

[40]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[41]  Filip Radlinski,et al.  Search Engines that Learn from Implicit Feedback , 2007, Computer.

[42]  Susan T. Dumais An interdisciplinary perspective on information retrieval , 2009, SIGIR.

[43]  Christian Fluhr,et al.  Multilingual information retrieval , 1997 .

[44]  Lutz Edzard Sībawayhi's Observations on Assimilatory Processes and Re-syllabification in the Light fo Optimality Theory , 2017 .

[45]  Meredith Ringel Morris,et al.  CoSearch: a system for co-located collaborative web search , 2008, CHI.

[46]  Ronen Feldman,et al.  The Text Mining Handbook: DIAL: A Dedicated Information Extraction Language for Text Mining , 2006 .

[47]  Kenneth Ward Church,et al.  Identifying word correspondence in parallel texts , 1991 .

[48]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[49]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[50]  Carol Peters,et al.  Advances in cross-language information retrieval : third Workshop of the Cross-Language Evaluation Forum, CLEF 2002, Rome, Itary, September 19-20, 2002 : revised papers , 2003 .

[51]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[52]  Randy Goebel,et al.  WebFrame: In Pursuit of Computationally and Cognitively Efficient Web Mining , 2002, PAKDD.

[53]  W. Bruce Croft,et al.  Phrasal translation and query expansion techniques for cross-language information retrieval , 1997, SIGIR '97.

[54]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[55]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .