A Semantic Completeness Proof for TaMeD
暂无分享,去创建一个
[1] Olivier Hermant. Méthodes sémantiques en déduction modulo , 2005 .
[2] Melvin Fitting,et al. First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.
[3] Domenico Cantone,et al. A Sound Framework for δ-Rule Variants in Free-Variable Semantic Tableaux , 2007, Journal of Automated Reasoning.
[4] Olivier Hermant,et al. Semantic Cut Elimination in the Intuitionistic Sequent Calculus , 2005, TLCA.
[5] Eric Deplagne. Sequent Calculus Viewed Modulo , 2000 .
[6] Peter H. Schmitt,et al. The liberalized δ-rule in free variable semantic tableaux , 2004, Journal of Automated Reasoning.
[7] Martin Giese,et al. Incremental Closure of Free Variable Tableaux , 2001, IJCAR.
[8] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[9] Jean-Louis Krivine. Une preuve formelle et intuitionniste du théorème de complétude de la logique classique , 1996, Bull. Symb. Log..
[10] Gilles Dowek,et al. Proof normalization modulo , 2003, Journal of Symbolic Logic.
[11] M. Fitting. First-order logic and automated theorem proving (2nd ed.) , 1996 .
[12] Andrei Voronkov,et al. What You Always Wanted to Know about Rigid E-Unification , 1996, Journal of Automated Reasoning.
[13] Bernhard Beckert,et al. The Even More Liberalized delta-Rule in Free Variable Semantic Tableaux , 1993, Kurt Gödel Colloquium.
[14] Andrei Voronkov,et al. Equality Reasoning in Sequent-Based Calculi , 2001, Handbook of Automated Reasoning.
[15] Richard Bonichon,et al. On Constructive Cut Admissibility in Deduction Modulo , 2006, TYPES.
[16] Richard Bonichon,et al. TaMeD: A Tableau Method for Deduction Modulo , 2004, IJCAR.
[17] Andrei Voronkov,et al. The Undecidability of Simultaneous Rigid E-Unification , 1996, Theor. Comput. Sci..
[18] Jürgen Stuber. A Model-Based Completeness Proof of Extended Narrowing and Resolution , 2001, IJCAR.
[19] Gilles Dowek,et al. Arithmetic as a Theory Modulo , 2005, RTA.