Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey

A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada–France–Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg^2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i′ band to a depth i′_(AB) < 24.7, for galaxies with signal-to-noise ratio ν_(SN) ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias.

[1]  S. M. Beard,et al.  The Cosmos system for crowded-field analysis of digitized photographic plate scans. , 1990 .

[2]  F. Valdes,et al.  Detection of systematic gravitational lens galaxy image alignments - Mapping dark matter in galaxy clusters , 1990 .

[3]  Abhishek Kumar Jha,et al.  Affine theorem for two-dimensional Fourier transform , 1993 .

[4]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[5]  The CANADA-FRANCE REDSHIFT SURVEY XI: Morphology of high-redshift field galaxies from high-resolution ground-based imaging , 1996, astro-ph/9601047.

[6]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000 .

[7]  Nick Kaiser A New Shear Estimator for Weak-Lensing Observations , 2000 .

[8]  David M. Wittman,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[9]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[10]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[11]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[12]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[13]  Eugene A. Magnier,et al.  The Elixir System: Data Characterization and Calibration at the Canada‐France‐Hawaii Telescope , 2004 .

[14]  E. Deul,et al.  GaBoDS: The Garching-Bonn Deep Survey; IV. Methods for the Image reduction of multi-chip Cameras , 2005 .

[15]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[16]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[17]  M. F. Physik,et al.  A deep i-selected multiwaveband galaxy catalogue in the COSMOS field , 2007, 0710.5244.

[18]  T. Kitching,et al.  Bayesian galaxy shape measurement for weak lensing surveys – I. Methodology and a fast-fitting algorithm , 2007, 0708.2340.

[19]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[20]  Bayesian Galaxy Shape Measurement for Weak Lensing Surveys -II. Application to Simulations , 2008, 0802.1528.

[21]  C. Unterborn,et al.  Inclination-Dependent Extinction Effects in Disk Galaxies in the Sloan Digital Sky Survey , 2008, 0801.2400.

[22]  A. Graham,et al.  Inclination- and dust-corrected galaxy parameters: bulge-to-disc ratios and size–luminosity relations , 2008, 0805.3565.

[23]  H. Hoekstra,et al.  Sérsiclets – a matched filter extension of Shapelets for weak lensing studies , 2008, 0809.3465.

[24]  S. Paulin-Henriksson,et al.  Optimal PSF modelling for weak lensing : complexity and sparsity , 2009, 0901.3557.

[25]  M. Bethge,et al.  Results of the GREAT08 Challenge?: an image analysis competition for cosmological lensing: Results o , 2009, 0908.0945.

[26]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[27]  P. Hudelot,et al.  CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wid , 2008, 0811.2239.

[28]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[29]  S. Bridle,et al.  Limitations of model-fitting methods for lensing shear estimation , 2009, 0905.4801.

[30]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[31]  M. Bartelmann,et al.  Weak gravitational lensing with deimos , 2010, 1008.1076.

[32]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[33]  Alexie Leauthaud,et al.  Precision simulation of ground-based lensing data using observations from space , 2011, 1107.4629.

[34]  P. Schneider,et al.  A bias in cosmic shear from galaxy selection: results from ray-tracing simulations , 2010, 1010.0010.

[35]  Michael Hirsch,et al.  Measurement and calibration of noise bias in weak lensing galaxy shape estimation , 2012, 1203.5049.

[36]  L. Waerbeke,et al.  Gravitational lensing simulations - I. Covariance matrices and halo catalogues , 2012, 1202.2332.

[37]  S. Harmeling,et al.  Image analysis for cosmology: results from the GREAT10 Galaxy Challenge , 2012, 1202.5254.

[38]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[39]  Massimo Viola,et al.  Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.

[40]  Adam Amara,et al.  Noise bias in weak lensing shape measurements , 2012, 1203.5050.