Return forecasts and optimal portfolio construction: a quantile regression approach

In finance there is growing interest in quantile regression with the particular focus on value at risk and copula models. In this paper, we first present a general interpretation of quantile regression in the context of financial markets. We then explore the full distributional impact of factors on returns of securities and find that factor effects vary substantially across quantiles of returns. Utilizing distributional information from quantile regression models, we propose two general methods for return forecasting and portfolio construction. We show that under mild conditions these new methods provide more accurate forecasts and potentially higher value-added portfolios than the classical conditional mean method.

[1]  R. C. Merton,et al.  Presidential Address: A simple model of capital market equilibrium with incomplete information , 1987 .

[2]  Richard Blundell,et al.  Endogeneity in Nonparametric and Semiparametric Regression Models , 2022 .

[3]  Hsiu-lang Chen,et al.  Portfolio style: Return-based attribution using quantile regression , 2001 .

[4]  Walter Oberhofer,et al.  The Consistency of Nonlinear Regression Minimizing the $L_1$-Norm , 1982 .

[5]  Ivana Komunjer,et al.  Evaluation and Combination of Conditional Quantile Forecasts , 2002 .

[6]  Josef Lakonishok,et al.  The impact of institutional trading on stock prices * , 1991 .

[7]  Quanshui Zhao ASYMPTOTICALLY EFFICIENT MEDIAN REGRESSION IN THE PRESENCE OF HETEROSKEDASTICITY OF UNKNOWN FORM , 2001, Econometric Theory.

[8]  Meiyuan Chen,et al.  Application of Quantile Regression to Estimation of Value at Risk , 2005 .

[9]  A. Chesher Identification in Nonseparable Models , 2003 .

[10]  R. Koenker,et al.  Quantile regression methods for recursive structural equation models , 2004 .

[11]  Josef Lakonishok,et al.  The impact of institutional trading on stock prices , 1992 .

[12]  Roger Koenker,et al.  L-estimatton for linear heteroscedastic models , 1994 .

[13]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[14]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[15]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[16]  Anthony W. Hughes,et al.  A Quantile Regression Analysis of the Cross Section of Stock Market Returns , 2002 .

[17]  R. Koenker,et al.  Regression Quantiles , 2007 .

[18]  Takeshi Amemiya,et al.  Two Stage Least Absolute Deviations Estimators , 1982 .

[19]  Narasimhan Jegadeesh,et al.  Evidence of Predictable Behavior of Security Returns , 1990 .

[20]  James L. Powell,et al.  THE ASYMPTOTIC NORMALITY OF TWO-STAGE LEAST ABSOLUTE , 1983 .

[21]  Jean-Francois Richard,et al.  The Encompassing Principle and Its Application to Testing Non-nested Hypotheses , 1986 .

[22]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[23]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[24]  R. Engle,et al.  CAViaR , 1999 .

[25]  Francis X. Diebold,et al.  Forecast combination and encompassing: Reconciling two divergent literatures , 1989 .

[26]  R. Koenker,et al.  An interior point algorithm for nonlinear quantile regression , 1996 .

[27]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[28]  Gregory Kordas Smoothed binary regression quantiles , 2006 .

[29]  David F. Hendry,et al.  On the Formulation of Empirical-models in Dynamic Econometrics , 1982 .

[30]  Gregory Kordas Credit Scoring Using Binary Quantile Regression , 2002 .