Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis

Piezoelectric actuators (PEA) are the fundamental elements for high-precision high-speed positioning/tracking task in many nanotechnology applications. However, the intrinsic hysteresis observed in PEAs has impaired their potential, specially, the motion accuracy. In this paper, the complicated nonlinear dynamics of PEA including hysteresis, creep, drift and time-delay etc. are treated as a black-box system exhibited as rate-dependent hysteresis. The multi-valued hysteresis is analyzed as a single-valued function so that a neural network (NN) can be built to model the hysteresis and its inversion. A sliding mode controller (SMC) augmented with inverse hysteresis model is then developed to compensate the hysteretic behavior, modeling error and disturbance to improve the positioning/tracking stability and accuracy. The effectiveness of this algorithm experimentally verified through the actual tracking control of a PEA.

[1]  Fumio Harashima Intelligent mechatronics , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[2]  Cameron N. Riviere,et al.  Modeling Rate-dependent Hysteresis in Piezoelectric Actuator , 2003 .

[3]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[4]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[5]  Gérard-André Capolino,et al.  Variable structure control of a piezoelectric actuator for a scanning tunneling microscope , 2004, IEEE Transactions on Industrial Electronics.

[6]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[7]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[8]  A. Ivanyi,et al.  A new neural-network-based scalar hysteresis model , 2002 .

[9]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[10]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[11]  Amr A. Adly,et al.  Using neural networks in the identification of Preisach-type hysteresis models , 1998 .

[12]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[13]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[14]  Nagi G. Naganathan,et al.  Preisach modeling of hysteresis for piezoceramic actuator system , 2002 .

[15]  Aristides A. G. Requicha Nanorobots, NEMS, and nanoassembly , 2003 .

[16]  K. Spanner,et al.  Advances in piezo-nanopositioning technology , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[17]  Hanz Richter,et al.  Modeling Nonlinear Behavior in a Piezoelectric Actuator , 2001 .

[18]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[19]  Li Chuntao,et al.  A neural networks model for hysteresis nonlinearity , 2004 .

[20]  D. Davino,et al.  Phenomenological dynamic model of a magnetostrictive actuator , 2004 .

[21]  Dongwoo Song,et al.  Modeling of piezo actuator’s nonlinear and frequency dependent dynamics , 1999 .