Parameter Study and Optimization of a Color-Based Object Classification System

Typical computer vision systems usually include a set of components such as a preprocessor, a feature extractor, and a classifier that together represent an image processing pipeline. For each component there are different operators available. Each operator has a different number of parameters with individual parameter domains. The challenge in developing a computer vision system is the optimal choice of the available operators and their parameters to construct the appropriate pipeline for the problem at hand. The task of finding the optimal combination and setting depends strongly on the definition of the term optimal. Optimality can reach from minimal computational time to maximal recognition rate of a system. Using the example of the color-based object classification system, this contribution presents a comprehensive approach for finding an optimal system by defining the required image processing pipeline, defining the optimization problem for the classification and improving the optimization by taking parameter studies into consideration. This unique approach produces a color-based classification system with an illuminant independent structure.

[1]  Luis Ibáñez,et al.  The ITK Software Guide , 2005 .

[2]  Einführung in die lineare und nichtlineare Optimierung , 2000 .

[3]  S. Lippman,et al.  The Scripps Institution of Oceanography , 1959, Nature.

[4]  Kendall Preston,et al.  Digital processing of biomedical images , 1976 .

[5]  Andreas Koschan,et al.  Digital Color Image Processing , 2008 .

[6]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[7]  C. Tiede Integration of Optimization Algorithms With Sensitivity Analysis, With Application to Volcanic Regions , 2005 .

[8]  Sandia Report,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 4.0 User's Manual , 2006 .

[9]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[10]  Dietrich Paulus,et al.  Edge Preserving Filters on Color Images , 2004, International Conference on Computational Science.

[11]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[12]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[13]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[14]  Larry S. Davis,et al.  A new class of edge-preserving smoothing filters , 1987, Pattern Recognit. Lett..

[15]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[16]  S. Eiho,et al.  Processing of RI-Angiocardiographic Images , 1976 .

[17]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[18]  Joachim Hornegger,et al.  Applied Pattern Recognition: A Practical Introduction to Image and Speech Processing in C++ , 2001 .

[19]  Bernt Schiele,et al.  Comprehensive Colour Image Normalization , 1998, ECCV.

[20]  Thomas S. Huang,et al.  Image processing , 1971 .

[21]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..