Analysis of laminated composite plates using a higher‐order shear deformation theory

A higher-order shear deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, Vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.

[1]  A. W. Leissa,et al.  Closure to ``Discussions of `Analysis of Heterogeneous Anisotropic Plates''' (1970, ASME J. Appl. Mech., 37, pp. 237-238) , 1970 .

[2]  E. Reissner,et al.  On bending of elastic plates , 1947 .

[3]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[4]  A. Kromm Verallgemeinerte Theorie der Plattenstatik , 1953 .

[5]  R. B. Nelson,et al.  A Refined Theory for Laminated Orthotropic Plates , 1974 .

[6]  H. Hencky,et al.  Über die Berücksichtigung der Schubverzerrung in ebenen Platten , 1947 .

[7]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[8]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[9]  J. N. Reddy,et al.  Energy and variational methods in applied mechanics , 1984 .

[10]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[11]  A. B. Basset On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells , 1889 .

[12]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[13]  F. B. Hildebrand,et al.  Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .

[14]  G. Turvey Bending of laterally loaded, simply supported, moderately thick, antisymmetrically laminated rectangular plates , 1977 .

[15]  Ahmed K. Noor,et al.  Stability of multilayered composite plates , 1975 .

[16]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[17]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[18]  Charles W. Bert,et al.  A critical evaluation of new plate theories applied to laminated composites , 1984 .

[19]  A. Kromm Über die Randquerkräfte bei gestützten Platten , 1955 .

[20]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .