On a quadratic matrix equation associated with an M‐matrix

We study the quadratic matrix equation X 2 - EX - F = 0, where E is diagonal and F is an M-matrix. Quadratic matrix equations of this type arise in noisy Wiener-Hopf problems for Markov chains. The solution of practical interest is a particular M-matrix solution. The existence and uniqueness of M-matrix solutions and numerical methods for finding the desired M-matrix solution are discussed by transforming the equation into an equation that belongs to a special class of non-symmetric algebraic Riccati equations (AREs). We also discuss the general non-symmetric ARE and describe how we can use the Schur method to find the stabilizing or almost stabilizing solution if it exists. The desired M-matrix solution of the quadratic matrix equation (a special non-symmetric ARE by itself) turns out to be the unique stabilizing or almost stabilizing solution.

[1]  Alan J. Laub,et al.  A stability-enhancing scaling procedure for Schur-Riccati solvers , 1989 .

[2]  Chun-Hua Guo A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation , 2002 .

[3]  Chun-Hua Guo,et al.  Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices , 2001, SIAM J. Matrix Anal. Appl..

[4]  E.D. Denman,et al.  An introduction to invariant imbedding , 1977, Proceedings of the IEEE.

[5]  L. Rogers Fluid Models in Queueing Theory and Wiener-Hopf Factorization of Markov Chains , 1994 .

[6]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[7]  Wen-Wei Lin,et al.  Nonsymmetric Algebraic Riccati Equations and Hamiltonian-like Matrices , 1998, SIAM J. Matrix Anal. Appl..

[8]  Alan J. Laub,et al.  Numerical improvements for solving Riccati equations , 1997, IEEE Trans. Autom. Control..

[9]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[10]  Kuan-Yue Wang,et al.  A Matrix Equation , 1991, Econometric Theory.

[11]  J. Demmel,et al.  On swapping diagonal blocks in real Schur form , 1993 .

[12]  G. Alefeld,et al.  On square roots of M-matrices , 1982 .

[13]  F. R. Gantmakher The Theory of Matrices , 1984 .

[14]  B. Anderson,et al.  Polynomial Factorization via the Riccati Equation , 1976 .

[15]  David L. Williams,et al.  Probabilistic factorization of a quadratic matrix polynomial , 1990 .

[16]  N. Higham,et al.  Numerical analysis of a quadratic matrix equation , 2000 .

[17]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[18]  Leonard Rogers,et al.  Computing the invariant law of a fluid model , 1994 .

[19]  H. Meyer,et al.  The Matrix Equation $AZ + B - ZCZ - ZD = 0$ , 1976 .

[20]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[21]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[22]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[23]  Alan J. Laub,et al.  Positive and negative solution of dual Riccati equations by matrix sign function iteration , 1989 .

[24]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[25]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[26]  N. Higham Computing real square roots of a real matrix , 1987 .

[27]  Alan J. Laub,et al.  On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations , 2000, SIAM J. Matrix Anal. Appl..

[28]  K. W. Chang Singular Perturbations of a General Boundary Value Problem , 1972 .

[29]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[30]  Å. Björck,et al.  A Schur method for the square root of a matrix , 1983 .