The dilatation operator for defect conformal N=4 SYM

We compute the dilatation operator for local "open string" operators situated at the interface of a certain supersymmetric defect version of $\mathcal{N}=4$ super-Yang-Mills theory. This field theory is dual to a probe D5-brane intersecting a stack of D3-branes where the number of D3-branes can change between the two sides the interface. DeWolfe and Mann obtained the dilation operator in the special case of an equal number of D3-branes. Using a combination explicit field theory calculations and integrability considerations we are able to extend this result to the general case.

[1]  L. Piroli,et al.  Integrable Matrix Product States from boundary integrability , 2018, SciPost Physics.

[2]  P. Calabrese,et al.  Integrable quenches in nested spin chains I: the exact steady states , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[3]  A. Ipsen,et al.  Asymptotic One-Point Functions in Gauge-String Duality with Defects. , 2017, Physical review letters.

[4]  L. Piroli,et al.  What is an integrable quench , 2017, 1709.04796.

[5]  A. Ipsen,et al.  Two-point functions in AdS/dCFT and the boundary conformal bootstrap equations , 2017, Journal of High Energy Physics.

[6]  A. Ipsen,et al.  A quantum check of AdS/dCFT , 2016, Journal of High Energy Physics.

[7]  A. Ipsen,et al.  One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects. , 2016, Physical review letters.

[8]  K. Zarembo,et al.  One-point functions in AdS/dCFT from matrix product states , 2015, 1512.02532.

[9]  Miroslav Rapčák Nonintegrability of NS5-like Interface in $\mathcal{N}=4$ Supersymmetric Yang-Mills , 2015, 1511.02243.

[10]  K. Zarembo,et al.  One-point functions in defect CFT and integrability , 2015, Journal of High Energy Physics.

[11]  E. Witten,et al.  Branes and Supergroups , 2014, 1410.1175.

[12]  D. Correa,et al.  D5-brane boundary reflection factors , 2013, 1301.3412.

[13]  Koichi Nagasaki,et al.  Expectation values of chiral primary operators in holographic interface CFT , 2012, 1205.1674.

[14]  C. Young,et al.  Integrable achiral D5-brane reflections and asymptotic Bethe equations , 2011, 1105.3707.

[15]  Rafael I. Nepomechie,et al.  Nested algebraic Bethe ansatz for open GL(N) spin chains with projected K-matrices , 2009, 0911.5494.

[16]  C. Young,et al.  Reflecting magnons from D7 and D5 branes , 2008, 0808.0452.

[17]  E. Witten,et al.  Supersymmetric Boundary Conditions in $\mathcal{N}=4$ Super Yang-Mills Theory , 2008, 0804.2902.

[18]  O. Dewolfe,et al.  Integrable Open Spin Chains in Defect Conformal Field Theory , 2004, hep-th/0401041.

[19]  J. Minahan,et al.  The Bethe-ansatz for N = 4 super Yang-Mills , 2002, hep-th/0212208.

[20]  J. Erdmenger,et al.  Four-dimensional superconformal theories with interacting boundaries or defects , 2002, hep-th/0203020.

[21]  H. Ooguri,et al.  Holography and defect conformal field theories , 2001, hep-th/0111135.

[22]  L. Randall,et al.  Open and closed string interpretation of SUSY CFT's on branes with boundaries , 2001, hep-th/0105132.

[23]  N. Slavnov,et al.  New solutions to the reflection equation and the projecting method , 1998, cond-mat/9810312.

[24]  J. Latorre,et al.  Differential regularization and renormalization: a new method of calculation in quantum field theory , 1992 .

[25]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[26]  N. Reshetikhin Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry , 1985 .