Real-Time Multiplex PCR for Detecting Shiga Toxin 2-Producing Escherichia coli O104:H4 in Human Stools

ABSTRACT A real-time multiplex PCR targeting stx 2, wzy O104, and fliC H4 of enterohemorrhagic Escherichia coli (EHEC) O104:H4 correctly determined the presence or absence of these genes in 253 EHEC isolates and enrichment cultures of stool samples from 132 patients. It is a rapid, sensitive, and specific tool for detecting EHEC O104:H4 in human stools.

[1]  L. Beutin,et al.  Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. , 2012, Journal of food protection.

[2]  L. Beutin,et al.  A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables. , 2012, International journal of food microbiology.

[3]  Klaus Stark,et al.  Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. , 2011, The New England journal of medicine.

[4]  Craig S. Wong,et al.  Early volume expansion during diarrhea and relative nephroprotection during subsequent hemolytic uremic syndrome. , 2011, Archives of pediatrics & adolescent medicine.

[5]  S. Felix,et al.  Treatment of severe neurological deficits with IgG depletion through immunoadsorption in patients with Escherichia coli O104:H4-associated haemolytic uraemic syndrome: a prospective trial , 2011, The Lancet.

[6]  A. Mellmann,et al.  Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. , 2011, The Lancet. Infectious diseases.

[7]  J. Rothberg,et al.  Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology , 2011, PloS one.

[8]  Dongfang Li,et al.  Identification of the Shiga Toxin-Producing Escherichia coli O104:H4 Strain Responsible for a Food Poisoning Outbreak in Germany by PCR , 2011, Journal of Clinical Microbiology.

[9]  A. Mellmann,et al.  Shiga Toxin, Cytolethal Distending Toxin, and Hemolysin Repertoires in Clinical Escherichia coli O91 Isolates , 2009, Journal of Clinical Microbiology.

[10]  A. Mellmann,et al.  Analysis of Collection of Hemolytic Uremic Syndrome–associated Enterohemorrhagic Escherichia coli , 2008, Emerging infectious diseases.

[11]  M. Gilmour,et al.  Sequence-based typing of genetic targets encoded outside of the O-antigen gene cluster is indicative of Shiga toxin-producing Escherichia coli serogroup lineages , 2007, Journal of medical microbiology.

[12]  A. Mellmann,et al.  Structural and functional differences between disease-associated genes of enterohaemorrhagic Escherichia coli O111. , 2007, International journal of medical microbiology : IJMM.

[13]  A. Friedrich,et al.  Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[14]  H. Karch,et al.  Pigeons as a possible reservoir of Shiga toxin 2f-producing Escherichia coli pathogenic to humans. , 2005, Berliner und Munchener tierarztliche Wochenschrift.

[15]  P. Tarr,et al.  Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome , 2005, The Lancet.

[16]  A. Caprioli,et al.  A New Shiga Toxin 2 Variant (Stx2f) fromEscherichia coli Isolated from Pigeons , 2000, Applied and Environmental Microbiology.

[17]  A. Fruth,et al.  Subtyping of pathogenic Escherichia coli strains using flagellar (H)-antigens: serotyping versus fliC polymorphisms. , 2003, International journal of medical microbiology : IJMM.