Flexible and efficient optimization of quantitative sequences using automatic differentiation of Bloch simulations

To investigate a computationally efficient method for optimizing the Cramér‐Rao Lower Bound (CRLB) of quantitative sequences without using approximations or an analytical expression of the signal.

[1]  Andrew W. Fitzgibbon,et al.  A benchmark of selected algorithmic differentiation tools on some problems in computer vision and machine learning , 2018, Optim. Methods Softw..

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Yang Liu,et al.  Generalized min-max bound-based MRI pulse sequence design framework for wide-range T1 relaxometry: A case study on the tissue specific imaging sequence , 2017, PloS one.

[4]  Nicole Seiberlich,et al.  Magnetic resonance fingerprinting with quadratic RF phase for measurement of T2* simultaneously with δf, T1, and T2 , 2018, Magnetic resonance in medicine.

[5]  L. Hall,et al.  Optimization of diffusion measurements using Cramer‐Rao lower bound theory and its application to articular cartilage , 2003, Magnetic resonance in medicine.

[6]  N. Khaneja,et al.  Heteronuclear decoupling by optimal tracking. , 2009, Journal of magnetic resonance.

[7]  Justin P. Haldar,et al.  Optimal Experiment Design for Magnetic Resonance Fingerprinting: Cramér-Rao Bound Meets Spin Dynamics , 2017, IEEE Transactions on Medical Imaging.

[8]  J. Hennig,et al.  Pseudo Steady‐State Free Precession for MR‐Fingerprinting , 2017, Magnetic resonance in medicine.

[9]  Mark D Does,et al.  Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping , 2018, Magnetic resonance in medicine.

[10]  M. Griswold,et al.  MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout , 2015, Magnetic resonance in medicine.

[11]  Daniel K. Sodickson,et al.  Relaxation in Spherical Coordinates: Analysis and Optimization of pseudo-SSFP based MR-Fingerprinting , 2017 .

[12]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[13]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[14]  Manojkumar Saranathan,et al.  Optimization of white‐matter‐nulled magnetization prepared rapid gradient echo (MP‐RAGE) imaging , 2015, Magnetic resonance in medicine.

[15]  Sebastian Weingärtner,et al.  Magnetic resonance fingerprinting using echo‐planar imaging: Joint quantification of T1 and T2∗ relaxation times , 2017, Magnetic resonance in medicine.

[16]  Shaihan J Malik,et al.  Joint system relaxometry (JSR) and Crámer‐Rao lower bound optimization of sequence parameters: A framework for enhanced precision of DESPOT T1 and T2 estimation , 2018, Magnetic resonance in medicine.

[17]  Josef Pfeuffer,et al.  Magnetic resonance field fingerprinting , 2018, Magnetic resonance in medicine.

[18]  John N. Maidens Optimal Control for Learning with Applications in Dynamic MRI , 2017 .

[19]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[20]  Ezequiel Farrher,et al.  Diffusion‐weighted DESS protocol optimization for simultaneous mapping of the mean diffusivity, proton density and relaxation times at 3 Tesla , 2017, Magnetic resonance in medicine.

[21]  Paul D. Hovland,et al.  Comparison of two gradient computation methods in Python , 2017 .

[22]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[23]  Jeffrey A. Fessler,et al.  Cramér Rao bound analysis of joint B1/T1 mapping methods in MRI , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[24]  L. Kiemeney,et al.  Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study , 2017, PloS one.

[25]  G. Wright,et al.  Rapid high‐resolution T1 mapping by variable flip angles: Accurate and precise measurements in the presence of radiofrequency field inhomogeneity , 2006, Magnetic resonance in medicine.

[26]  B. Rutt,et al.  Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state , 2003, Magnetic resonance in medicine.

[27]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[28]  Robin J. Hogan,et al.  Fast Reverse-Mode Automatic Differentiation using Expression Templates in C++ , 2014, ACM Trans. Math. Softw..

[29]  Dougal Maclaurin,et al.  Modeling, Inference and Optimization With Composable Differentiable Procedures , 2016 .

[30]  P Börnert,et al.  Towards predicting the encoding capability of MR fingerprinting sequences. , 2017, Magnetic resonance imaging.

[31]  D. Sodickson,et al.  Hybrid-state free precession in nuclear magnetic resonance , 2018, Communications Physics.

[32]  David M. Grant,et al.  Optimal determination of relaxation times of fourier transform nuclear magnetic resonance. Determination of spin-lattice relaxation times in chemically polarized species , 1974 .

[33]  Denis Grenier,et al.  A simplified framework to optimize MRI contrast preparation , 2018, Magnetic resonance in medicine.

[34]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[35]  Thomas E Yankeelov,et al.  Methods and challenges in quantitative imaging biomarker development. , 2015, Academic radiology.

[36]  J. MacFall,et al.  Comprehensive analysis of the Cramer–Rao bounds for magnetic resonance temperature change measurement in fat–water voxels using multi-echo imaging , 2012, Magnetic Resonance Materials in Physics, Biology and Medicine.

[37]  K. Scheffler,et al.  Extended phase graphs with anisotropic diffusion. , 2010, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[38]  Matthias Weigel,et al.  Extended phase graphs: Dephasing, RF pulses, and echoes ‐ pure and simple , 2015, Journal of magnetic resonance imaging : JMRI.

[39]  Glen R Morrell,et al.  Uncertainty in T1 mapping using the variable flip angle method with two flip angles , 2009, Physics in medicine and biology.

[40]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[41]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[42]  B A Hargreaves,et al.  A simple analytic method for estimating T2 in the knee from DESS. , 2017, Magnetic resonance imaging.

[43]  P Kellman,et al.  Joint estimation of water/fat images and field inhomogeneity map , 2008, Magnetic resonance in medicine.

[44]  Alain Lalande,et al.  What are normal relaxation times of tissues at 3 T? , 2017, Magnetic resonance imaging.

[45]  Robert Brown,et al.  Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting , 2019, Magnetic resonance in medicine.

[46]  C. Jack,et al.  Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom , 2018, Magnetic resonance in medicine.

[47]  Andreas Griewank,et al.  3. Fundamentals of Forward and Reverse , 2008 .

[48]  Lawrence L. Wald,et al.  Maximum likelihood reconstruction for magnetic resonance fingerprinting , 2016, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[49]  Optimizing fingerprinting experiments for parameter identification: Application to spin systems , 2017, 1711.07658.

[50]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[51]  J. Duerk,et al.  Magnetic Resonance Fingerprinting , 2013, Nature.

[52]  Stephen J Sawiak,et al.  MR fingerprinting with simultaneous B1 estimation , 2015, Magnetic resonance in medicine.

[53]  Matteo Cencini,et al.  Magnetic resonance fingerprinting with dictionary‐based fat and water separation (DBFW MRF): A multi‐component approach , 2018, Magnetic resonance in medicine.

[54]  Travis B. Smith,et al.  Multi‐parametric T2* magnetic resonance fingerprinting using variable echo times , 2018, NMR in biomedicine.

[55]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.