A Survey on Shape Correspondence

We review methods designed to compute correspondences between geometric shapes represented by triangle meshes, contours, or point sets. This survey is motivated in part by recent developments in space-time registration, where one seeks a correspondence between non-rigid and time-varying surfaces, and semantic shape analysis, which underlines a recent trend to incorporate shape understanding into the analysis pipeline. Establishing a meaningful correspondence between shapes is often difficult since it generally requires an understanding of the structure of the shapes at both the local and global levels, and sometimes the functionality of the shape parts as well. Despite its inherent complexity, shape correspondence is a recurrent problem and an essential component of numerous geometry processing applications. In this survey, we discuss the different forms of the correspondence problem and review the main solution methods, aided by several classification criteria arising from the problem definition. The main categories of classification are defined in terms of the input and output representation, objective function, and solution approach. We conclude the survey by discussing open problems and future perspectives.

[1]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[3]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[4]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[5]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[6]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Christopher J. Taylor,et al.  Statistical models of shape - optimisation and evaluation , 2008 .

[8]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[9]  Hans-Peter Seidel,et al.  Motion capture using joint skeleton tracking and surface estimation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[11]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[13]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Yücel Yemez,et al.  3D Shape correspondence by isometry-driven greedy optimization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[16]  Ghassan Hamarneh,et al.  A graph-based approach to skin mole matching incorporating template-normalized coordinates , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Tamal K. Dey,et al.  Persistent Heat Signature for Pose‐oblivious Matching of Incomplete Models , 2010, Comput. Graph. Forum.

[18]  Daniel Cohen-Or,et al.  Electors Voting for Fast Automatic Shape Correspondence , 2010, Comput. Graph. Forum.

[19]  Ghassan Hamarneh,et al.  Statistical Shape Modeling Using MDL Incorporating Shape, Appearance, and Expert Knowledge , 2007, MICCAI.

[20]  Craig Gotsman,et al.  Articulated Object Reconstruction and Markerless Motion Capture from Depth Video , 2008, Comput. Graph. Forum.

[21]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[22]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Ghassan Hamarneh,et al.  Contour Correspondence via Ant Colony Optimization , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[24]  Daniel P. Huttenlocher,et al.  Fast affine point matching: an output-sensitive method , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Günther Greiner,et al.  Reconstructing Animated Meshes from Time‐Varying Point Clouds , 2008, Comput. Graph. Forum.

[26]  Baining Guo,et al.  Perceptually based approach for planar shape morphing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[27]  Daniel Cohen-Or,et al.  A Part‐aware Surface Metric for Shape Analysis , 2009, Comput. Graph. Forum.

[28]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[29]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[31]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, ACM Trans. Graph..

[32]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[33]  Thomas A. Funkhouser,et al.  Consistent segmentation of 3D models , 2009, Comput. Graph..

[34]  Leonidas J. Guibas,et al.  Eurographics Symposium on Geometry Processing (2007) Reconstruction of Deforming Geometry from Time-varying Point Clouds , 2022 .

[35]  Thomas A. Funkhouser,et al.  Fuzzy Geodesics and Consistent Sparse Correspondences For: eformable Shapes , 2010 .

[36]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[37]  Daniel Cohen-Or,et al.  Part Analogies in Sets of Objects , 2008, 3DOR@Eurographics.

[38]  Daniel Cremers,et al.  Efficient Shape Matching Via Graph Cuts , 2007, EMMCVPR.

[39]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[40]  Jitendra Malik,et al.  Shape Context: A New Descriptor for Shape Matching and Object Recognition , 2000, NIPS.

[41]  Nikos Paragios,et al.  Shape registration in implicit spaces using information theory and free form deformations , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[43]  Martin Styner,et al.  STATISTICAL SHAPE ANALYSIS OF BRAIN STRUCTURES USING SPHERICAL WAVELETS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[44]  Martin Styner,et al.  Evaluation of 3D Correspondence Methods for Model Building , 2003, IPMI.

[45]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[46]  Thomas A. Funkhouser,et al.  Symmetry factored embedding and distance , 2010, ACM Transactions on Graphics.

[47]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[48]  Hans-Peter Seidel,et al.  Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data , 2009, TOGS.

[49]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[50]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[51]  Leonidas J. Guibas,et al.  Dynamic geometry registration , 2007, Symposium on Geometry Processing.

[52]  Daniel Cohen-Or,et al.  Consensus Skeleton for Non‐rigid Space‐time Registration , 2010, Comput. Graph. Forum.

[53]  Anthony J. Yezzi,et al.  Texture transfer during shape transformation , 2005, TOGS.

[54]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[56]  Pascal Fua,et al.  Detecting changes in 3-D shape using self-consistency , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[57]  Horst Bunke,et al.  Bridging the Gap between Graph Edit Distance and Kernel Machines , 2007, Series in Machine Perception and Artificial Intelligence.

[58]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[59]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[60]  Alexander J. Smola,et al.  Learning Graph Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[62]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[63]  Robert D. Nowak,et al.  Robust contour matching via the order-preserving assignment problem , 2006, IEEE Transactions on Image Processing.

[64]  K. Ramani,et al.  Three-dimensional shape searching : state-ofthe-art review and future trends , 2005 .

[65]  Hao Zhang,et al.  Spectral Methods for Mesh Processing and Analysis , 2007, Eurographics.

[66]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[67]  Haim J. Wolfson,et al.  Geometric hashing: an overview , 1997 .

[68]  Kai Xu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.

[69]  Ghassan Hamarneh,et al.  The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Jonathon Howard,et al.  Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy minimization , 2008, Medical Image Anal..

[71]  Umberto Castellani,et al.  Sparse points matching by combining 3D mesh saliency with statistical descriptors , 2008, Comput. Graph. Forum.

[72]  Thomas A. Funkhouser,et al.  Partial matching of 3D shapes with priority-driven search , 2006, SGP '06.

[73]  Ariel Shamir,et al.  Pose-Oblivious Shape Signature , 2007, IEEE Transactions on Visualization and Computer Graphics.

[74]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[75]  M. V. D. Panne,et al.  Joint-aware manipulation of deformable models , 2009, SIGGRAPH 2009.

[76]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[77]  Lisa Tang,et al.  SMRFI: Shape matching via registration of vector-valued feature images , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[78]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[79]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[80]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[81]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[82]  Szymon Rusinkiewicz,et al.  Shape matching and anisotropy , 2004, ACM Trans. Graph..

[83]  Ghassan Hamarneh,et al.  Prior Knowledge for Part Correspondence , 2011, Comput. Graph. Forum.

[84]  Daniel Cohen-Or,et al.  Surface reconstruction using local shape priors , 2007, Symposium on Geometry Processing.

[85]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[86]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[87]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[88]  Hao Zhang,et al.  A spectral approach to shape-based retrieval of articulated 3D models , 2007, Comput. Aided Des..

[89]  Michael Garland,et al.  Curvature maps for local shape comparison , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[90]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[91]  Marcel Körtgen,et al.  3D Shape Matching with 3D Shape Contexts , 2003 .

[92]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Alfred M. Bruckstein,et al.  Partial Similarity of Objects, or How to Compare a Centaur to a Horse , 2009, International Journal of Computer Vision.

[94]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[95]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[96]  Shimon Ullman,et al.  Recognizing solid objects by alignment with an image , 1990, International Journal of Computer Vision.

[97]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[98]  Matthias Zwicker,et al.  Range Scan Registration Using Reduced Deformable Models , 2009, Comput. Graph. Forum.

[99]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[100]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[101]  Johan Karlsson,et al.  A Ground Truth Correspondence Measure for Benchmarking , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[102]  Sandy Irani,et al.  Combinatorial and experimental results for randomized point matching algorithms , 1996, SCG '96.

[103]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[104]  Rasmus R. Paulsen,et al.  Shape Modelling Using Markov Random Field Restoration of Point Correspondences , 2003, IPMI.

[105]  Daniel Cohen-Or,et al.  Space-time surface reconstruction using incompressible flow , 2008, ACM Trans. Graph..

[106]  Alain Pitiot,et al.  Learning Shape Correspondence for n-D curves , 2006, International Journal of Computer Vision.

[107]  Ali Shokoufandeh,et al.  Retrieving articulated 3-D models using medial surfaces , 2008, Machine Vision and Applications.

[108]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[109]  João Paulo Costeira,et al.  A Global Solution to Sparse Correspondence Problems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[111]  Bernhard Schölkopf,et al.  Object correspondence as a machine learning problem , 2005, ICML.

[112]  Hans-Peter Seidel,et al.  Performance capture from sparse multi-view video , 2008, ACM Trans. Graph..

[113]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[114]  Leonidas J. Guibas,et al.  Example-Based 3D Scan Completion , 2005 .

[115]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[116]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[117]  Kim M. Dalton,et al.  Encoding Cortical Surface by Spherical Harmonics , 2008 .

[118]  D. Cohen-Or,et al.  Style-content separation by anisotropic part scales , 2010, ACM Trans. Graph..

[119]  Hans-Peter Seidel,et al.  Marker-less Deformable Mesh Tracking for Human Shape and Motion Capture , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[120]  Daniela Giorgi,et al.  3D Shape Description and Matching Based on Properties of Real Functions , 2007, Eurographics.

[121]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[122]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[123]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[124]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[125]  Carl Olsson,et al.  A polynomial-time bound for matching and registration with outliers , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[126]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[127]  David S. Doermann,et al.  Robust point matching for nonrigid shapes by preserving local neighborhood structures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[128]  Steven Gold,et al.  Softmax to Softassign: neural network algorithms for combinatorial optimization , 1996 .

[129]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[130]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[131]  Clark F. Olson,et al.  Efficient Pose Clustering Using a Randomized Algorithm , 1997, International Journal of Computer Vision.

[132]  Matthias Zwicker,et al.  Automatic Registration for Articulated Shapes , 2008, Comput. Graph. Forum.

[133]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[134]  Igor Guskov,et al.  Multi-scale features for approximate alignment of point-based surfaces , 2005, SGP '05.

[135]  Szymon Rusinkiewicz,et al.  Global non-rigid alignment of 3-D scans , 2007, ACM Trans. Graph..

[136]  Hao Zhang,et al.  Non-Rigid Spectral Correspondence of Triangle Meshes , 2007, Int. J. Shape Model..

[137]  Lisa Tang,et al.  Simulation of Ground-Truth Validation Data Via Physically- and Statistically-Based Warps , 2008, MICCAI.

[138]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[139]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Thomas A. Funkhouser,et al.  Symmetry-Aware Mesh Processing , 2009, IMA Conference on the Mathematics of Surfaces.

[141]  Olga Sorkine-Hornung,et al.  Differential Representations for Mesh Processing , 2006, Comput. Graph. Forum.

[142]  Silvia Biasotti,et al.  Sub-part correspondence by structural descriptors of 3D shapes , 2006, Comput. Aided Des..