Local Smoothing for Kernel Distribution Function Estimation

The problem of bandwidth selection for kernel-based estimation of the distribution function (cdf) at a given point is considered. With appropriate bandwidth, a kernel-based estimator (kdf) is known to outperform the empirical distribution function. However, such a bandwidth is unknown in practice. In pointwise estimation, the appropriate bandwidth depends on the point where the function is estimated. The existing smoothing methods use one common bandwidth to estimate the cdf. The accuracy of the resulting estimates varies substantially depending on the cdf and the point where it is estimated. We propose to select bandwidth by minimizing a bootstrap estimator of the MSE of the kdf. The resulting estimator performs reliably, irrespective of where the cdf is estimated. It is shown to be consistent under i.i.d. as well as strongly mixing dependence assumption. Two applications of the proposed estimator are shown in finance and seismology. We report a dataset on the S & P Nifty index values.

[1]  A. Bose,et al.  Density estimation using bootstrap bandwidth selector , 2013 .

[2]  P. Hall,et al.  Bandwidth selection for the smoothing of distribution functions , 1998 .

[3]  Graciela Estévez-Pérez,et al.  Nonparametric Kernel Distribution Function Estimation with kerdiest: An R Package for Bandwidth Choice and Applications , 2012 .

[4]  Alan M. Polansky,et al.  Multistage plug—in bandwidth selection for kernel distribution function estimates , 2000 .

[5]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[6]  M. Falk Relative efficiency and deficiency of kernel type estimators of smooth distribution functions , 1983 .

[7]  Ignacio López-de-Ullibarri Bandwidth Selection in Kernel Distribution Function Estimation , 2015 .

[8]  E. Rieders The size of the averages of strongly mixing random variables , 1993 .

[9]  Prakasa Rao Nonparametric functional estimation , 1983 .

[10]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[11]  Jan W. H. Swanepoel,et al.  A New Kernel Distribution Function Estimator Based on a Non-parametric Transformation of the Data , 2005 .

[12]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[13]  Lijian Yang,et al.  Kernel estimation of multivariate cumulative distribution function , 2008 .

[14]  P. Sarda Smoothing parameter selection for smooth distribution functions , 1993 .

[15]  R. Dennis Cook,et al.  GrassmannOptim: An R Package for Grassmann Manifold Optimization , 2012 .

[16]  Rolf-Dieter Reiss,et al.  Nonparametric Estimation of Smooth Distribution Functions , 2016 .

[17]  Zhezhen Jin,et al.  On kernel estimation of a multivariate distribution function , 1999 .

[18]  Santanu Dutta,et al.  Local Smoothing Using the Bootstrap , 2014, Commun. Stat. Simul. Comput..