Indestructibility of Vopěnka’s Principle
暂无分享,去创建一个
[1] Dana Scott. Measurable Cardinals and Constructible Sets , 2003 .
[2] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[3] A. Levy,et al. Measurable cardinals and the continuum hypothesis , 1967 .
[4] Joel David Hamkins. The Lottery Preparation , 2000, Ann. Pure Appl. Log..
[5] J. Cummings. Iterated Forcing and Elementary Embeddings , 2010 .
[6] Jeffrey H. Smith,et al. Implications of large-cardinal principles in homotopical localization , 2005 .
[7] Andrew D. Brooke-Taylor. Large cardinals and definable well-orders on the universe , 2009, J. Symb. Log..
[8] A. Levy,et al. A hierarchy of formulas in set theory , 1965 .
[9] S. Friedman,et al. Fine Structure and Class Forcing , 2000 .
[10] Kentaro Sato. Double helix in large large cardinals and iteration of elementary embeddings , 2007, Ann. Pure Appl. Log..
[11] A. Pultr,et al. Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .
[12] J. Adámek,et al. Locally Presentable and Accessible Categories: Bibliography , 1994 .
[13] James Cummings,et al. Squares, scales and stationary Reflection , 2001, J. Math. Log..
[14] Joel David Hamkins,et al. Indestructible Strong Unfoldability , 2010, Notre Dame J. Formal Log..
[15] Sy-David Friedman. Large cardinals and $L$-like universes , 2005 .
[16] Arthur W. Apter,et al. Universal Indestructibility , 1998, math/9808004.
[17] W. Szymanowski,et al. BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .
[18] Arthur W. Apter,et al. An equiconsistency for universal indestructibility , 2010, J. Symb. Log..
[19] Polska Akademia Nauk,et al. Bulletin de l'Académie polonaise des sciences. Série des sciences mathématiques , 1979 .
[20] A. Kanamori. The Higher Infinite , 1994 .
[21] Saharon Shelah,et al. On certain indestructibility of strong cardinals and a question of Hajnal , 1989, Arch. Math. Log..
[22] Aleš Pultr,et al. A rigid relation exists on any set , 1965 .
[23] Thomas A. Johnstone. Strongly unfoldable cardinals made indestructible , 2008, Journal of Symbolic Logic.
[24] R. Jensen. Measurable cardinals and the GCH , 1974 .
[25] ScienceDirect. Annals of mathematical logic , 1969, Journal of Symbolic Logic.
[26] Richard Laver,et al. Making the supercompactness of κ indestructible under κ-directed closed forcing , 1978 .
[27] Akihiro Kanamori,et al. Strong axioms of infinity and elementary embeddings , 1978 .
[28] James Cummings,et al. Indexed squares , 2002 .
[29] Sy-David Friedman,et al. Large cardinals and gap-1 morasses , 2009, Ann. Pure Appl. Log..
[30] Daniel J. Velleman. Morasses, diamond, and forcing , 1982, Ann. Math. Log..
[31] David Asperó,et al. Large cardinals and locally defined well-orders of the universe , 2009, Ann. Pure Appl. Log..