Indestructibility of Vopěnka’s Principle

Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, specifically, reverse Easton iterations of increasingly directed closed partial orders.

[1]  Dana Scott Measurable Cardinals and Constructible Sets , 2003 .

[2]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[3]  A. Levy,et al.  Measurable cardinals and the continuum hypothesis , 1967 .

[4]  Joel David Hamkins The Lottery Preparation , 2000, Ann. Pure Appl. Log..

[5]  J. Cummings Iterated Forcing and Elementary Embeddings , 2010 .

[6]  Jeffrey H. Smith,et al.  Implications of large-cardinal principles in homotopical localization , 2005 .

[7]  Andrew D. Brooke-Taylor Large cardinals and definable well-orders on the universe , 2009, J. Symb. Log..

[8]  A. Levy,et al.  A hierarchy of formulas in set theory , 1965 .

[9]  S. Friedman,et al.  Fine Structure and Class Forcing , 2000 .

[10]  Kentaro Sato Double helix in large large cardinals and iteration of elementary embeddings , 2007, Ann. Pure Appl. Log..

[11]  A. Pultr,et al.  Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .

[12]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[13]  James Cummings,et al.  Squares, scales and stationary Reflection , 2001, J. Math. Log..

[14]  Joel David Hamkins,et al.  Indestructible Strong Unfoldability , 2010, Notre Dame J. Formal Log..

[15]  Sy-David Friedman Large cardinals and $L$-like universes , 2005 .

[16]  Arthur W. Apter,et al.  Universal Indestructibility , 1998, math/9808004.

[17]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[18]  Arthur W. Apter,et al.  An equiconsistency for universal indestructibility , 2010, J. Symb. Log..

[19]  Polska Akademia Nauk,et al.  Bulletin de l'Académie polonaise des sciences. Série des sciences mathématiques , 1979 .

[20]  A. Kanamori The Higher Infinite , 1994 .

[21]  Saharon Shelah,et al.  On certain indestructibility of strong cardinals and a question of Hajnal , 1989, Arch. Math. Log..

[22]  Aleš Pultr,et al.  A rigid relation exists on any set , 1965 .

[23]  Thomas A. Johnstone Strongly unfoldable cardinals made indestructible , 2008, Journal of Symbolic Logic.

[24]  R. Jensen Measurable cardinals and the GCH , 1974 .

[25]  ScienceDirect Annals of mathematical logic , 1969, Journal of Symbolic Logic.

[26]  Richard Laver,et al.  Making the supercompactness of κ indestructible under κ-directed closed forcing , 1978 .

[27]  Akihiro Kanamori,et al.  Strong axioms of infinity and elementary embeddings , 1978 .

[28]  James Cummings,et al.  Indexed squares , 2002 .

[29]  Sy-David Friedman,et al.  Large cardinals and gap-1 morasses , 2009, Ann. Pure Appl. Log..

[30]  Daniel J. Velleman Morasses, diamond, and forcing , 1982, Ann. Math. Log..

[31]  David Asperó,et al.  Large cardinals and locally defined well-orders of the universe , 2009, Ann. Pure Appl. Log..