A Linear Programming Based Approach to the Steiner Tree Problem with a Fixed Number of Terminals

We present a set of integer programs (IPs) for the Steiner tree problem with the property that the best solution obtained by solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of the underlying graph and our main result is that the linear programming (LP) relaxation of each IP is integral so that it can be solved as a linear program. However, the number of IPs grows exponentially with the number of terminals in the Steiner tree. As a consequence, we are able to solve the Steiner tree problem by solving a polynomial number of LPs, when the number of terminals is fixed.

[1]  Thomas Rothvoß,et al.  Matroids and integrality gaps for hypergraphic steiner tree relaxations , 2011, STOC '12.

[2]  Jochen Könemann,et al.  On the equivalence of the bidirected and hypergraphic relaxations for Steiner tree , 2014, Math. Program..

[3]  David Pritchard,et al.  Hypergraphic LP Relaxations for Steiner Trees , 2009, SIAM J. Discret. Math..

[4]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[5]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[6]  Dániel Marx,et al.  The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems , 2017, ICALP.

[7]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[8]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[9]  Richard T. Wong,et al.  A dual ascent approach for steiner tree problems on a directed graph , 1984, Math. Program..

[10]  Jens Vygen,et al.  Dijkstra meets Steiner: a fast exact goal-oriented Steiner tree algorithm , 2017, Math. Program. Comput..

[11]  Marshall W. Bern,et al.  Polynomially solvable special cases of the Steiner problem in planar networks , 1991, Ann. Oper. Res..

[12]  Siavash Vahdati Daneshmand,et al.  On Steiner trees and minimum spanning trees in hypergraphs , 2003, Oper. Res. Lett..

[13]  Jin-Kao Hao,et al.  Swap-vertex based neighborhood for Steiner tree problems , 2016, Mathematical Programming Computation.

[14]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[15]  Miroslav Chlebík,et al.  The Steiner tree problem on graphs: Inapproximability results , 2008, Theor. Comput. Sci..

[16]  G. Nemhauser,et al.  Integer Programming , 2020 .

[17]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[18]  Fabrizio Grandoni,et al.  Steiner Tree Approximation via Iterative Randomized Rounding , 2013, JACM.

[19]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[20]  Renato F. Werneck,et al.  Dual Heuristics on the Exact Solution of Large Steiner Problems , 2001, Electron. Notes Discret. Math..

[21]  T. Koch,et al.  SteinLib: An Updated Library on Steiner Tree Problems in Graphs , 2001 .

[22]  Dimitri Watel,et al.  A practical greedy approximation for the directed Steiner tree problem , 2014, J. Comb. Optim..

[23]  Jeffrey S. Salowe,et al.  Spanning trees in hypergraphs with applications to steiner trees , 1998 .

[24]  T. Koch,et al.  Solving Steiner Tree Problems in Graphs to Optimality , 1998 .

[25]  S. Voß,et al.  Efficient path and vertex exchange in steiner tree algorithms , 1997 .

[26]  Siavash Vahdati Daneshmand,et al.  Extending Reduction Techniques for the Steiner Tree Problem , 2002, ESA.

[27]  Siavash Vahdati Daneshmand,et al.  A comparison of Steiner tree relaxations , 2001, Discret. Appl. Math..

[28]  Michel X. Goemans,et al.  A catalog of steiner tree formulations , 1993, Networks.

[29]  Ronald L. Rardin,et al.  Polyhedral Characterization of Discrete Dynamic Programming , 1990, Oper. Res..

[30]  Vijay V. Vazirani,et al.  On the bidirected cut relaxation for the metric Steiner tree problem , 1999, SODA '99.

[31]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[32]  Michel X. Goemans,et al.  The Steiner tree polytope and related polyhedra , 1994, Math. Program..

[33]  Ding-Zhu Du,et al.  The k-Steiner Ratio in Graphs , 1997, SIAM J. Comput..

[34]  Siavash Vahdati Daneshmand,et al.  Improved algorithms for the Steiner problem in networks , 2001, Discret. Appl. Math..

[35]  David Pritchard,et al.  A partition-based relaxation for Steiner trees , 2007, Math. Program..