Atmospheric Broadband Model for Computation of Solar Radiation at the Earth’s Surface. Application to Mediterranean Climate

Abstract—This paper deals with a new broadband atmospheric model designed for predicting the total and diffuse solar radiation incident on the earth’s surface in medium or large-sized coastal or near-coastal cities, under a clear or cloudy sky. The revised solar spectrum is used. The atmospheric transmittance of each atmospheric parameter contributing to solar radiation depletion, water vapor, ozone, uniformly mixed gases, molecules and aerosols, is calculated using parameterized expressions resulting from integrated spectral transmittance functions. The beam and diffuse radiation components are obtained as a function of the specific atmospheric transmittances. The model requires the following parameters as inputs: total water vapor and ozone amount in a vertical column, sunshine duration and the surface albedo. The model has been used for validation purposes at two stations with slightly different characteristics (NOA and Penteli) in the Athens basin, where total and diffuse radiation measurements are available, for a period of 34 months for NOA and 23 for Penteli. The NOA station is located on a small hill (107 m a.m.s.l.) near the center of Athens, while the Penteli station (500 m a.m.s.l.) is situated in a relatively less polluted area in northern Athens. The clear sky part of the model was tested for 70 individual “clear” days with 2-minute intervals, while the whole model was checked with monthly “mean” days and mean hourly values. A close agreement between the calculated and the measured values of total and diffuse solar radiation is observed.

[1]  S. Idso Atmospheric Attenuation of Solar Radiation. , 1969 .

[2]  J. Dave,et al.  Effect of Aerosols on the Transfer of Solar Energy Through Realistic Model Atmospheres. Part I: Non-Absorbing Aerosols , 1973 .

[3]  G. Kent,et al.  Modeling atmospheric aerosol backscatter at CO2 laser wavelengths. 1: Aerosol properties, modeling techniques, and associated problems. , 1983, Applied optics.

[4]  R. L. Hulstrom,et al.  Terrestrial solar spectral data sets , 1982 .

[5]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[6]  E. M. Patterson,et al.  Global measurements of aerosols in remote continental and marine regions: Concentrations, size distributions, and optical properties , 1980 .

[7]  C. Gueymard Comments on “POTSOL: Model to predict extraterrestrial and clear sky solar radiation” and “Ground level solar radiation prediction model including cloud cover effects” , 1986 .

[8]  K. I. Kondratʹev Radiation in the atmosphere , 1969 .

[9]  H. Neckel,et al.  Improved data of solar spectral irradiance from 0.33 to 1.25 microns , 1981 .

[10]  A. H. Woodcock,et al.  The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii , 1984 .

[11]  M. Iqbal,et al.  A modification of the ASHRAE clear sky irradiation model , 1985 .

[12]  Douglas V. Hoyt,et al.  A model for the calculation of solar global insolation , 1978 .

[13]  B. Psiloglou,et al.  On the atmospheric water vapor transmission function for solar radiation models , 1994 .

[14]  N. Galanis,et al.  A critical review of the ASHRAE solar radiation model , 1986 .

[15]  J. D. Karalis,et al.  The turbidity parameters in Athens , 1976 .

[16]  D. S. Munro,et al.  Simple approaches to modelling solar radiation in the arctic , 1995 .

[17]  J. Hay,et al.  A cloud layer-sunshine model for estimating direct, diffuse and total solar radiation , 1977 .

[18]  Costas A. Varotsos,et al.  Ozone depletion over Greece as deduced from Nimbus-7 TOMS measurements , 1993 .

[19]  Christian A. Gueymard,et al.  Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data , 1993 .

[20]  M. A. Atwater,et al.  A numerical solar radiation model based on standard meteorological observations , 1978 .

[21]  D. Mckay,et al.  Estimating solar irradiance and components , 1982 .

[22]  John A. Davies,et al.  Evaluation of selected models for estimating solar radiation on horizontal surfaces , 1989 .

[23]  R. Bird,et al.  Simplified clear sky model for direct and diffuse insolation on horizontal surfaces , 1981 .

[24]  G. L. Powell,et al.  The clear sky solar model , 1984 .

[25]  C. G. Justus,et al.  A simple hourly clear-sky solar radiation model based on meteorological parameters , 1983 .

[26]  S. Barbaro,et al.  An atmospheric model for computing direct and diffuse solar radiation , 1979 .

[27]  J H Perluissi,et al.  New LOWTRAN band model for water vapor. , 1989, Applied optics.

[28]  Meinrad A. Mächler,et al.  Parameterization of solar irradiation under clear skies , 1983 .

[29]  B. Katsoulis,et al.  Atmospheric turbidity at athens observatory , 1977 .

[30]  J.-D. F. Bartoe,et al.  Absolute solar spectral irradiance 120 nm-400 nm (results from the solar ultraviolet spectral irradiance monitor-SUSIM-experiment on board Spacelab 2) , 1988 .

[31]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[32]  C. Gueymard,et al.  UPDATED TRANSMITTANCE FUNCTIONS FOR USE IN FAST SPECTRAL DIRECT BEAM IRRADIANCE MODELS , 1994 .

[33]  S. Idso The Transmittance of the Atmosphere for Solar Radiation on Individual Clear Days , 1970 .

[34]  G. Fiocco,et al.  Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K , 1989 .

[35]  Owen B. Toon,et al.  Microphysical Processes Affecting Stratospheric Aerosol Particles , 1977 .

[36]  John A. Davies,et al.  Estimating Solar Irradiation on Horizontal Surfaces , 1984 .

[37]  John L. Monteith,et al.  Attenuation of solar radiation: A climatological study , 1962 .

[38]  J. R. Esmond,et al.  Absolute absorption cross-section measurements of ozone in the wavelength region 238–335 nm and the temperature dependence , 1988 .

[39]  B. Psiloglou,et al.  Predicting the spectral and broadband aerosol transmittance in the atmosphere for solar radiation modelling , 1997 .

[40]  C M Tsai,et al.  New LOWTRAN models for the uniformly mixed gases. , 1987, Applied optics.

[41]  B. Psiloglou,et al.  On broadband Rayleigh scattering in the atmosphere for solar radiation modelling , 1995 .

[42]  P. S. Brown,et al.  Numerical Computations of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity , 1974 .

[43]  H. Neckel,et al.  The solar radiation between 3300 and 12500 Å , 1984 .

[44]  G. Paulin Simulation de l'énergie solaire au sol , 1980 .

[45]  B. Psiloglou,et al.  A new parameterization of the integral ozone transmission , 1996 .

[46]  Á. Mészáros,et al.  On the size distribution of atmospheric aerosol particles of different composition , 1977 .

[47]  F. Ideriah A model for calculating direct and diffuse solar radiation. , 1981 .

[48]  B. Psiloglou,et al.  Predicting the broadband transmittance of the uniformly mixed gases (CO2, CO, N2O, CH4 and O2) in the atmosphere, for solar radiation models , 1995 .

[49]  T. Lyons,et al.  Atmospheric attenuation of solar radiation at Adelaide , 1975 .

[50]  M. Nunez,et al.  Estimating global solar radiation , 1975 .

[51]  J. Hansen,et al.  A parameterization for the absorption of solar radiation in the earth's atmosphere , 1974 .

[52]  Christian A. Gueymard,et al.  A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the earth's surface , 1989 .

[53]  John E. Hay,et al.  Modelling direct, diffuse, and total solar radiation for cloudless days , 1976 .