Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.

[1]  I. G. Young,et al.  Aerobic respiration in mutants of Escherichia coli accumulating quinone analogues of ubiquinone. , 1977, Biochimica et biophysica acta.

[2]  I. G. Young,et al.  Biosynthesis of bacterial menaquinones: the membrane-associated 1,4-dihydroxy-2-naphthoate octaprenyltransferase of Escherichia coli. , 1976, Biochemistry.

[3]  F. L. Crane,et al.  Coordinated, coenzyme Q reversible, 2,5-dibromothymoquionine inhibition of electron transport and ATPase in Escherichia coli. , 1976, Biochemical and biophysical research communications.

[4]  E. Lin,et al.  Electron transport chain from glycerol 3-phosphate to nitrate in Escherichia coli , 1975, Journal of bacteriology.

[5]  R. Poole,et al.  Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. , 1975, The Biochemical journal.

[6]  N. Boardman,et al.  The link between charge separation, proton movement and ATPase reactions , 1975, FEBS letters.

[7]  P. Garland,et al.  Proton translocation and the respiratory nitrate reductase of Escherichia coli. , 1975, The Biochemical journal.

[8]  E. Lin,et al.  Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system , 1975, Journal of bacteriology.

[9]  A. Singh,et al.  Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12. , 1975, Biochimica et biophysica acta.

[10]  P. Mitchell Protonmotive redox mechanism of the cytochrome b‐c 1 complex in the respiratory chain: Protonmotive ubiquinone cycle , 1975, FEBS letters.

[11]  F. L. Crane,et al.  Lipophilic chelator inhibition of electron transport in Escherichia coli , 1975, Journal of bacteriology.

[12]  G. Cox,et al.  Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation. , 1975, The Biochemical journal.

[13]  E. C. Slater,et al.  The respiratory chain in a ubiquinone-deficient mutant of Saccharomyces cerevisiae. , 1975, Biochimica et biophysica acta.

[14]  I. G. Young Biosynthesis of bacterial menaquinones. Menaquinone mutants of Escherichia coli. , 1975, Biochemistry.

[15]  H. Enoch,et al.  The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli. , 1974, Biochemical and biophysical research communications.

[16]  W. Konings,et al.  Anaerobic transport in Escherichia coli membrane vesicles. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Klingenberg,et al.  The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. , 1973, European journal of biochemistry.

[18]  I. G. Young,et al.  Pathway for Ubiquinone Biosynthesis in Escherichia coli K-12: Gene-Enzyme Relationships and Intermediates , 1973, Journal of bacteriology.

[19]  J. Hamilton,et al.  Biochemical and Genetic Studies on Ubiquinone Biosynthesis in Escherichia coli K-12: 4-Hydroxybenzoate Octaprenyltransferase , 1972, Journal of bacteriology.

[20]  I. G. Young,et al.  Mutants of Escherichia coli K-12 Blocked in the Final Reaction of Ubiquinone Biosynthesis: Characterization and Genetic Analysis , 1972, Journal of bacteriology.

[21]  M. Klingenberg,et al.  On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. , 1971, European journal of biochemistry.

[22]  G. Cox,et al.  The function of menaquinone (vitamin K 2 ) in Escherichia coli K-12. , 1971, Biochimica et biophysica acta.

[23]  R. Lester,et al.  Effects of Molybdate and Selenite on Formate and Nitrate Metabolism in Escherichia coli , 1971, Journal of bacteriology.

[24]  F. L. Crane,et al.  [220] Determination of ubiquinones , 1971 .

[25]  P. Dunphy,et al.  [233] The structure and function of quinones in respiratory metabolism , 1971 .

[26]  M. Klingenberg,et al.  Electron and coupled energy transfer in biological systems , 1971 .

[27]  J. Hamilton,et al.  The function of ubiquinone in Escherichia coli. , 1970, The Biochemical journal.

[28]  M. Klingenberg,et al.  Quinones and nicotinamide nucleotides associated with electron transfer. , 1970, Vitamins and hormones.

[29]  B. Persson,et al.  Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. , 1969, European journal of biochemistry.

[30]  M. Showe,et al.  Localization and Regulation of Synthesis of Nitrate Reductase in Escherichia coli , 1968, Journal of bacteriology.

[31]  L. Szarkowska The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone). , 1966, Archives of biochemistry and biophysics.

[32]  C. Jones,et al.  Electron transport in Azotobacter vinelandii. , 1966, Biochimica et biophysica acta.

[33]  E. Itagaki THE ROLE OF LIPOPHILIC QUINONES IN THE ELECTRON TRANSPORT SYSTEM OF ESCHERICHIA COLI. , 1964, Journal of biochemistry.

[34]  J. Chappell The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. , 1964, The Biochemical journal.

[35]  A. F. Brodie,et al.  Oxidative phosphorylation in fractionated bacterial systems. X. Different roles for the natural quinones of Escherichia coli W in oxidative metabolism. , 1963, The Journal of biological chemistry.

[36]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.