A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data

In this paper we propose and analyze a stochastic collocation method to solve elliptic partial differential equations with random coefficients and forcing terms (input data of the model). The input data are assumed to depend on a finite number of random variables. The method consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space and naturally leads to the solution of uncoupled deterministic problems as in the Monte Carlo approach. It can be seen as a generalization of the stochastic Galerkin method proposed in [I. Babuscka, R. Tempone, and G. E. Zouraris, SIAM J. Numer. Anal., 42 (2004), pp. 800-825] and allows one to treat easily a wider range of situations, such as input data that depend nonlinearly on the random variables, diffusivity coefficients with unbounded second moments, and random variables that are correlated or even unbounded. We provide a rigorous convergence analysis and demonstrate exponential convergence of the “probability error” with respect to the number of Gauss points in each direction in the probability space, under some regularity assumptions on the random input data. Numerical examples show the effectiveness of the method.

[1]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[2]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[3]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[5]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[6]  Fabio Nobile,et al.  Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.

[7]  P. Erdös,et al.  Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.

[8]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[9]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[10]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[11]  Marcus Sarkis,et al.  Stochastic Galerkin Method for Elliptic Spdes: A White Noise Approach , 2006 .

[12]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  D. Funaro,et al.  Approximation of some diffusion evolution equations in unbounded domains by hermite functions , 1991 .

[15]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[18]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[19]  Menner A Tatang,et al.  Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .

[20]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[21]  I. Hlavácek Uncertain input data problems and the worst scenario method , 2011 .

[22]  J. Tinsley Oden,et al.  Estimation of modeling error in computational mechanics , 2002 .

[23]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[24]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[25]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[26]  Raul Tempone,et al.  Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients , 2009 .

[27]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[28]  M. Grigoriu Stochastic Calculus: Applications in Science and Engineering , 2002 .

[29]  E. Hille,et al.  Contributions to the theory of Hermitian series. II. The representation problem , 1940 .

[30]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[31]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[32]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[33]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[34]  E. Hille,et al.  Contributions to the theory of Hermitian series , 1939 .

[35]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[36]  Claudio Canuto,et al.  Numerical solution of partial differential equations in random domains: An application to wind engineering. , 2009 .

[37]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[38]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[39]  John P. Boyd,et al.  Asymptotic coefficients of hermite function series , 1984 .

[40]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[41]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[42]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[43]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[44]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[45]  Gianluca Iaccarino,et al.  Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..

[46]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[47]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[48]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[49]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[50]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[51]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[52]  D. O’Leary,et al.  Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering , 2005 .

[53]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[54]  Ivo Babuška,et al.  SOLVING STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS BASED ON THE EXPERIMENTAL DATA , 2003 .

[55]  J. V. Uspensky,et al.  On the convergence of quadrature formulas related to an infinite interval , 1928 .