Biology of the troponin complex in cardiac myocytes.

Troponin is the regulatory complex of the myofibrillar thin filament that plays a critical role in regulating excitation-contraction coupling in the heart. Troponin is composed of three distinct gene products: troponin C (cTnC), the 18-kD Ca(2+)-binding subunit; troponin I (cTnI), the approximately 23-kD inhibitory subunit that prevents contraction in the absence of Ca2+ binding to cTnC; and troponin T (cTnT), the approximately 35-kD subunit that attaches troponin to tropomyosin (Tm) and to the myofibrillar thin filament. Over the past 45 years, extensive biochemical, biophysical, and structural studies have helped to elucidate the molecular basis of troponin function and thin filament activation in the heart. At the onset of systole, Ca2+ binds to the N-terminal Ca2+ binding site of cTnC initiating a conformational change in cTnC, which catalyzes protein-protein associations activating the myofibrillar thin filament. Thin filament activation in turn facilitates crossbridge cycling, myofibrillar activation, and contraction of the heart. The intrinsic length-tension properties of cardiac myocytes as well as the Frank-Starling properties of the intact heart are mediated primarily through Ca(2+)-responsive thin filament activation. cTnC, cTnI, and cTnT are encoded by distinct single-copy genes in the human genome, each of which is expressed in a unique cardiac-restricted developmentally regulated fashion. Elucidation of the transcriptional programs that regulate troponin transcription and gene expression has provided insights into the molecular mechanisms that regulate and coordinate cardiac myocyte differentiation and provided unanticipated insights into the pathogenesis of cardiac hypertrophy. Autosomal dominant mutations in cTnI and cTnT have been identified and are associated with familial hypertrophic and restrictive cardiomyopathies.

[1]  M. Nemer,et al.  A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription , 1994, Molecular and cellular biology.

[2]  J. Potter,et al.  The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. , 1982, The Journal of biological chemistry.

[3]  R. Solaro,et al.  Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. , 1998, Circulation research.

[4]  J. Potter,et al.  The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. , 1980, The Journal of biological chemistry.

[5]  P. Kirchhof,et al.  Familial Hypertrophic Cardiomyopathy-Linked Mutant Troponin T Causes Stress-Induced Ventricular Tachycardia and Ca2+-Dependent Action Potential Remodeling , 2003, Circulation research.

[6]  M. Matsuzaki,et al.  Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy , 1997, Nature Genetics.

[7]  S. Amacher,et al.  Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle , 1993, Molecular and cellular biology.

[8]  R. Schwartz,et al.  GATA-4 and Nkx-2.5 Coactivate Nkx-2 DNA Binding Targets: Role for Regulating Early Cardiac Gene Expression , 1998, Molecular and Cellular Biology.

[9]  D. Szczesna,et al.  Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. , 2001, The Journal of biological chemistry.

[10]  E. Morrisey,et al.  GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. , 1996, Developmental biology.

[11]  J. Potter,et al.  Plasticity in Skeletal , Cardiac , and Smooth Muscle Invited Review : Pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation , 2001 .

[12]  J. Leiden,et al.  Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene , 1992, Molecular and cellular biology.

[13]  J. Leiden,et al.  17 – GATA Transcription Factors and Cardiac Development , 1999 .

[14]  H. Huxley,et al.  The Contractile Structure of Cardiac and Skeletal Muscle , 1961, Circulation.

[15]  B. Wolska,et al.  Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions , 2001, The Journal of physiology.

[16]  R. Hodges,et al.  Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. , 1998, Circulation research.

[17]  M. Yokota,et al.  Phenotypic Variation of Familial Hypertrophic Cardiomyopathy Caused by the Phe110→Ile Mutation in Cardiac Troponin T , 2000, Cardiology.

[18]  S. Ebashi Third Component Participating in the Super precipitation of ‘Natural Actomyosin’ , 1963, Nature.

[19]  R A Milligan,et al.  Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy , 1987, The Journal of cell biology.

[20]  A. Strauss,et al.  Molecular cloning of rat cardiac troponin I and analysis of troponin I isoform expression in developing rat heart. , 1991, Biochemistry.

[21]  Steven B Marston,et al.  Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications. , 2003, Circulation research.

[22]  K Sigrist,et al.  GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. , 1997, Genes & development.

[23]  Christine E. Seidman,et al.  α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere , 1994, Cell.

[24]  J. Leiden,et al.  Structure and expression of the murine slow/cardiac troponin C gene. , 1989, The Journal of biological chemistry.

[25]  Dahua Zhang,et al.  Phosphorylation of Troponin I Controls Cardiac Twitch Dynamics: Evidence From Phosphorylation Site Mutants Expressed on a Troponin I-Null Background in Mice , 2002, Circulation research.

[26]  R Craig,et al.  Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. , 2001, Journal of molecular biology.

[27]  S Ringer,et al.  A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart , 1883, The Journal of physiology.

[28]  M. Yacoub,et al.  Developmental expression of troponin I isoforms in fetal human heart , 1991, FEBS letters.

[29]  A. Picard,et al.  Structure and regulation of the mouse cardiac troponin I gene. , 1994, The Journal of biological chemistry.

[30]  S. Orkin GATA-binding transcription factors in hematopoietic cells , 1992 .

[31]  Hanh T. Nguyen,et al.  Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene , 1985, Cell.

[32]  H. Haugen,et al.  Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice , 1996, Molecular and cellular biology.

[33]  R. Solaro Integration of myofilament response to Ca2+ with cardiac pump regulation and pump dynamics. , 1999, The American journal of physiology.

[34]  T. Irving,et al.  Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. , 2003, The Journal of physiology.

[35]  J. Leiden,et al.  Structure, Function, and Regulation of Troponin C , 1991, Circulation.

[36]  R. Solaro,et al.  Troponin I, stunning, hypertrophy, and failure of the heart. , 1999, Circulation research.

[37]  K. Chien,et al.  Genotype, phenotype: upstairs, downstairs in the family of cardiomyopathies. , 2003, The Journal of clinical investigation.

[38]  H. Watkins,et al.  Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Leiden,et al.  Attenuation of length dependence of calcium activation in myofilaments of transgenic mouse hearts expressing slow skeletal troponin I , 2000, The Journal of physiology.

[40]  P. Allen,et al.  Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. , 1991, Circulation research.

[41]  Yuichiro Maéda,et al.  Structure of the core domain of human cardiac troponin in the Ca2+-saturated form , 2003, Nature.

[42]  H. Mabuchi,et al.  Clinical features of hypertrophic cardiomyopathy caused by a Lys183 deletion mutation in the cardiac troponin I gene. , 2000, Circulation.

[43]  D. Allen,et al.  The cellular basis of the length-tension relation in cardiac muscle. , 1985, Journal of molecular and cellular cardiology.

[44]  K. Jaquet,et al.  Phosphorylation of human cardiac troponin I G203S and K206Q linked to familial hypertrophic cardiomyopathy affects actomyosin interaction in different ways. , 2003, Journal of molecular and cellular cardiology.

[45]  E. Olson The Path to the Heart and the Road Not Taken , 2001, Science.

[46]  A. Gomes,et al.  The Role of Troponins in Muscle Contraction , 2002, IUBMB life.

[47]  Erik G. Ellsworth,et al.  Prevalence and Spectrum of Thin Filament Mutations in an Outpatient Referral Population With Hypertrophic Cardiomyopathy , 2003, Circulation.

[48]  H. Rindt,et al.  In vivo regulation of the mouse beta myosin heavy chain gene. , 1994, The Journal of biological chemistry.

[49]  A. Gomes,et al.  Cardiac Troponin T Isoforms Affect the Ca2+Sensitivity and Inhibition of Force Development , 2002, The Journal of Biological Chemistry.

[50]  D. Wilson,et al.  The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells , 1994, Molecular and cellular biology.

[51]  J. Gergely,et al.  Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. , 1984, CRC critical reviews in biochemistry.

[52]  D. Atar,et al.  Cardiac Troponin I Is Modified in the Myocardium of Bypass Patients , 2001, Circulation.

[53]  R. Solaro,et al.  Alterations in myofibrillar function and protein profiles after complete global ischemia in rat hearts. , 1992, Circulation research.

[54]  D. Kass,et al.  Frequency- and Afterload-Dependent Cardiac Modulation In Vivo by Troponin I With Constitutively Active Protein Kinase A Phosphorylation Sites , 2004, Circulation research.

[55]  P. Allen,et al.  Troponin T isoform expression in the normal and failing human left ventricle: a correlation with myofibrillar ATPase activity. , 1992, Basic research in cardiology.

[56]  D. Atar,et al.  Role of troponin I proteolysis in the pathogenesis of stunned myocardium. , 1997, Circulation research.

[57]  J. Metzger,et al.  Myofilament Calcium Sensitivity and Cardiac Disease: Insights From Troponin I Isoforms and Mutants , 2002, Circulation research.

[58]  E. Homsher,et al.  Functional Consequences of Troponin T Mutations Found in Hypertrophic Cardiomyopathy* , 1999, The Journal of Biological Chemistry.

[59]  J. Canty,et al.  Troponin I Proteolysis and Myocardial Stunning: Now You See It-Now You Don>>t. , 2002, Journal of molecular and cellular cardiology.

[60]  M. Yacoub,et al.  Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. , 1995, Journal of molecular and cellular cardiology.

[61]  L. Tobacman,et al.  Thin filament-mediated regulation of cardiac contraction. , 1996, Annual review of physiology.

[62]  G. Butler-Browne,et al.  Troponin T mRNA and protein isoforms in the human left ventricle: pattern of expression in failing and control hearts. , 1997, Journal of molecular and cellular cardiology.

[63]  R. Kretsinger,et al.  Structure and evolution of calcium-modulated proteins. , 1980, CRC critical reviews in biochemistry.

[64]  L. Leinwand,et al.  Ca2+ activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T , 2001 .

[65]  A. Marian,et al.  Molecular Genetic Basis of Hypertrophic Cardiomyopathy: , 1998, Journal of cardiovascular electrophysiology.

[66]  H. Watkins,et al.  Altered Regulatory Properties of Human Cardiac Troponin I Mutants That Cause Hypertrophic Cardiomyopathy* , 2000, The Journal of Biological Chemistry.

[67]  F O Mueller,et al.  Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. , 1996, JAMA.

[68]  W. Kabsch,et al.  Atomic model of the actin filament , 1990, Nature.

[69]  E. Homsher,et al.  Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium , 2000, The Journal of physiology.

[70]  D. Kass,et al.  Transgenic mouse model of stunned myocardium. , 2000, Science.

[71]  P. Elliott,et al.  Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. , 2003, The Journal of clinical investigation.

[72]  J. Seidman,et al.  Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. , 1996, The Journal of clinical investigation.

[73]  T. Imaizumi,et al.  Clinical manifestations of hypertrophic cardiomyopathy with mutations in the cardiac beta-myosin heavy chain gene or cardiac troponin T gene. , 1996, Journal of cardiac failure.

[74]  J. Gergely,et al.  Reconstitution of troponin activity from three protein components. , 1971, The Journal of biological chemistry.

[75]  D. Szczesna,et al.  Altered Regulation of Cardiac Muscle Contraction by Troponin T Mutations That Cause Familial Hypertrophic Cardiomyopathy* , 2000, The Journal of Biological Chemistry.

[76]  E. Morrisey,et al.  GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. , 1997, Developmental biology.

[77]  I. Ohtsuki,et al.  Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. , 1998, American journal of physiology. Cell physiology.

[78]  R. Moss,et al.  Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart , 1999, The Journal of physiology.

[79]  M. Yacoub,et al.  Troponin I gene expression during human cardiac development and in end-stage heart failure. , 1993, Circulation research.

[80]  T. Irving,et al.  Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation , 2002, Pflügers Archiv.

[81]  L. Kedes,et al.  Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene. , 1990, The Journal of biological chemistry.

[82]  U. Sigwart,et al.  New concepts in hypertrophic cardiomyopathies, part II. , 2001, Circulation.

[83]  S. Ebashi,et al.  Troponin as the Ca++-receptive protein in the contractile system. , 1967, Journal of biochemistry.

[84]  R. Kitsis,et al.  cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. , 1997, Circulation.

[85]  B. Pan,et al.  Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers. , 1987, The Journal of biological chemistry.

[86]  C. Thompson,et al.  Structure, expression and regulation of the murine 4F2 heavy chain. , 1989, Nucleic acids research.

[87]  Hugo A. Katus,et al.  Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. , 2000, European heart journal.

[88]  U. Hellman,et al.  Identification of the genotypes causing hypertrophic cardiomyopathy in northern Sweden. , 2003, Journal of molecular and cellular cardiology.

[89]  Z. Papp,et al.  Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. , 2003, Cardiovascular research.

[90]  Zhi-Bin Yu,et al.  A Proteolytic NH2-terminal Truncation of Cardiac Troponin I That Is Up-regulated in Simulated Microgravity* , 2001, The Journal of Biological Chemistry.

[91]  H. Watkins,et al.  Sudden death due to troponin T mutations. , 1997, Journal of the American College of Cardiology.

[92]  P. Buttrick,et al.  Modulation of Thin Filament Activity in Long and Short Term Regulation of Cardiac Function , 2002 .

[93]  J. Leiden,et al.  The structure and regulation of expression of the murine fast skeletal troponin C gene. Identification of a developmentally regulated, muscle-specific transcriptional enhancer. , 1990, The Journal of biological chemistry.

[94]  D. Wilson,et al.  Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. , 1997, Developmental biology.

[95]  F. Charron,et al.  GATA transcription factors and cardiac development. , 1999, Seminars in cell & developmental biology.

[96]  A. Katz Purification and properties of a tropomyosin-containing protein fraction that sensitizes reconstituted actomyosin to calcium-binding agents. , 1966, Journal of Biological Chemistry.

[97]  Simon,et al.  Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart , 1993, Molecular and cellular biology.

[98]  P. Rosevear,et al.  Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. , 1995, Biochemistry.

[99]  S. Vatner,et al.  A Novel Mechanism for Myocardial Stunning Involving Impaired Ca2+ Handling , 2001, Circulation research.

[100]  S. Palmer,et al.  Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae. , 1998, Circulation research.

[101]  J. Molkentin,et al.  Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene , 1994, Molecular and cellular biology.

[102]  C. Mueller,et al.  GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. , 1994, The Journal of biological chemistry.

[103]  B D Sykes,et al.  Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. , 1997, Biochemistry.

[104]  V. Regitz-Zagrosek,et al.  Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy , 2003, Clinical genetics.

[105]  S. Diriong,et al.  Human cardiac troponin T: cloning and expression of new isoforms in the normal and failing heart. , 1995, Circulation research.

[106]  L. V. Heilbrunn The Action of Calcium on Muscle Protoplasm , 1940, Physiological Zoology.

[107]  B. Wolska,et al.  Troponin I phosphorylation plays an important role in the relaxant effect of beta-adrenergic stimulation in mouse hearts. , 2004, Cardiovascular research.

[108]  S. Perry,et al.  Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle , 1979, Nature.

[109]  K. McDonald,et al.  Length dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. , 1995, The Journal of physiology.

[110]  Jeffrey Robbins,et al.  A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy , 1998, Cell.

[111]  M. Entman,et al.  Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. , 1998, The Journal of clinical investigation.

[112]  H. Huxley X-ray analysis and the problem of muscle , 1953, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[113]  J. Seidman,et al.  Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. , 1995, The New England journal of medicine.

[114]  J. Molkentin,et al.  Alpha-myosin heavy chain gene regulation: delineation and characterization of the cardiac muscle-specific enhancer and muscle-specific promoter. , 1996, Journal of molecular and cellular cardiology.

[115]  K. Thygesen,et al.  Erratum: Myocardial infarction redefined - A consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction (Journal of the American College of Cardiology (2000) 36 (959-969)) , 2001 .

[116]  J. Gergely,et al.  Purification and properties of the components from troponin. , 1973, The Journal of biological chemistry.

[117]  J. Martín,et al.  A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle , 1994, Molecular and cellular biology.

[118]  J. Canty,et al.  Absence of troponin I degradation or altered sarcoplasmic reticulum uptake protein expression after reversible ischemia in swine. , 1999, Circulation research.

[119]  E. Olson,et al.  GATA4: a novel transcriptional regulator of cardiac hypertrophy? , 1997, Circulation.

[120]  F. Samson,et al.  Molecular cloning and developmental expression of human cardiac troponin T , 1993, FEBS letters.

[121]  J. Robbins,et al.  Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. , 1991, The Journal of biological chemistry.

[122]  J. Seidman,et al.  Cis-acting sequences that modulate atrial natriuretic factor gene expression. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[123]  K. Boheler,et al.  Molecular cloning and analysis of the human cardiac sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) gene promoter. , 1996, Journal of molecular and cellular cardiology.

[124]  G. Phillips,et al.  Troponin and its interactions with tropomyosin. An electron microscope study. , 1982, Journal of molecular biology.

[125]  E. Olson,et al.  Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. , 1997, Genes & development.

[126]  P. Buttrick,et al.  Integration of pathways that signal cardiac growth with modulation of myofilament activity , 2002, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[127]  L. Kedes,et al.  Cloning, structural analysis, and expression of the human fast twitch skeletal muscle troponin C gene. , 1990, The Journal of biological chemistry.

[128]  E. Morrisey,et al.  GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. , 1998, Genes & development.

[129]  M. Davies,et al.  A new mutation of the cardiac troponin T gene causing familial hypertrophic cardiomyopathy without left ventricular hypertrophy , 1999, Heart.

[130]  J. Metzger,et al.  Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. , 1999, The Journal of clinical investigation.

[131]  A. Kisanuki,et al.  Patients with familial hypertrophic cardiomyopathy caused by a Phe110Ile missense mutation in the cardiac troponin T gene have variable cardiac morphologies and a favorable prognosis. , 1998, Circulation.

[132]  S. Orkin,et al.  GATA transcription factors: key regulators of hematopoiesis. , 1995, Experimental hematology.

[133]  F. Müller,et al.  Biochemical mechanism(s) of stunning in conscious dogs. , 2000, American journal of physiology. Heart and circulatory physiology.

[134]  J. Metzger,et al.  Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. , 2004, Circulation research.

[135]  B. Hainque,et al.  Deletion in the cardiac troponin I gene in a family from northern Sweden with hypertrophic cardiomyopathy. , 2000, Journal of molecular and cellular cardiology.

[136]  F. Plum Handbook of Physiology. , 1960 .

[137]  B. Lewis A Historical Overview , 1996 .

[138]  J. Molkentin,et al.  The Transcription Factors GATA4 and GATA6 Regulate Cardiomyocyte Hypertrophy in Vitro and in Vivo * , 2001, The Journal of Biological Chemistry.

[139]  A. F. Martin,et al.  Turnover of cardiac troponin subunits. Kinetic evidence for a precursor pool of troponin-I. , 1981, The Journal of biological chemistry.

[140]  B. Nadal-Ginard,et al.  Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence. , 1986, Journal of molecular biology.

[141]  J. Squire,et al.  A new look at thin filament regulation in vertebrate skeletal muscle , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[142]  J. Gergely,et al.  Lack of identity of tropocalcin with troponin components. , 1972, Biochemical and biophysical research communications.

[143]  B. Kay,et al.  Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. , 1995, Circulation research.

[144]  J. Seidman,et al.  Altered regulatory function of two familial hypertrophic cardiomyopathy troponin T mutants. , 1999, Biochemistry.

[145]  J. D. Engel,et al.  GATA Transcription Factors , 2002 .

[146]  A. Murphy,et al.  Troponin I isoform expression in human heart. , 1991, Circulation research.

[147]  L. Voipio‐Pulkki,et al.  Degradation of cardiac troponin I: implication for reliable immunodetection. , 1998, Clinical chemistry.

[148]  J. Gulati,et al.  Diminished Ca2+ sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rat. , 1995, Circulation research.

[149]  M. Fishman,et al.  Fashioning the vertebrate heart: earliest embryonic decisions. , 1997, Development.

[150]  A. Shah,et al.  Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically , 2004, The Journal of physiology.

[151]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[152]  D. K. Arrell,et al.  Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. , 1999, Circulation research.

[153]  Solaro Rj Troponin C — Troponin I Interactions and Molecular Signalling in Cardiac Myofilaments , 1995 .

[154]  A. Marian,et al.  Expression of a mutant (Arg92Gln) human cardiac troponin T, known to cause hypertrophic cardiomyopathy, impairs adult cardiac myocyte contractility. , 1997, Circulation research.

[155]  S. Ebashi,et al.  Calcium Ions and Muscle Contraction , 1972, Nature.

[156]  K. Ball,et al.  Identification and functional significance of troponin I isoforms in neonatal rat heart myofibrils. , 1991, Circulation research.

[157]  A. M. Gordon,et al.  Familial hypertrophic cardiomyopathy mutations in troponin I (K183D, G203S, K206Q) enhance filament sliding. , 2003, Physiological genomics.

[158]  Troponin I: Inhibitor or facilitator , 1999 .

[159]  R. Moss,et al.  Molecular Control Mechanisms in Striated Muscle Contraction , 2002, Advances in Muscle Research.

[160]  E. Homsher,et al.  Regulation of contraction in striated muscle. , 2000, Physiological reviews.

[161]  S Ebashi,et al.  Historical Overview , 1988, Annals of the New York Academy of Sciences.

[162]  A. Weber,et al.  The role of calcium in the superprecipitation of actomyosin. , 1961, The Journal of biological chemistry.

[163]  Yongge Liu,et al.  Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis? , 1996, Circulation research.

[164]  E. Homsher,et al.  Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. , 1996, The Journal of clinical investigation.

[165]  D. Szczesna,et al.  Abnormal Contractile Function in Transgenic Mice Expressing a Familial Hypertrophic Cardiomyopathy-linked Troponin T (I79N) Mutation* , 2001, The Journal of Biological Chemistry.

[166]  B. Sykes,et al.  Structures of the troponin C regulatory domains in the apo and calcium-saturated states , 1995, Nature Structural Biology.

[167]  N. Toyota,et al.  Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy , 1981, The Journal of cell biology.