GPCRmd uncovers the dynamics of the 3D-GPCRome
暂无分享,去创建一个
Toni Giorgino | Davide Provasi | Gianni De Fabritiis | George Khelashvili | Marta Filizola | David E. Gloriam | Ferran Sanz | Jessica Sallander | Hugo Gutiérrez-de-Terán | Juan Manuel Ramírez-Anguita | Harel Weinstein | Johanna K. S. Tiemann | Peter W. Hildebrand | Mireia Jiménez-Rosés | Minos-Timotheos Matsoukas | Gáspár Pándy-Szekeres | Dorota Latek | Jens Carlsson | Ramon Guixà-González | Mariona Torrens-Fontanals | Tomasz Maciej Stepniewski | David Aranda-García | Adrián Morales-Pastor | Brian Medel-Lacruz | Jana Selent | Willem Jespers | Silvana Vasile | Alejandro Varela-Rial | Eduardo Mayol | Ismael Rodríguez-Espigares | Nathalie Worp | Xavier Deupi | Slawomir Filipek | José Carlos Gómez-Tamayo | Angel Gonzalez | Jon Kapla | Peter Kolb | Maria Marti-Solano | Pierre Matricon | Przemyslaw Miszta | Mireia Olivella | Laura Perez-Benito | Santiago Ríos | Iván R. Torrecillas | Agnieszka Sztyler | Ulrich Zachariae | David E. Gloriam | Arnau Cordomi | J. C. Gómez-Tamayo | H. Weinstein | F. Sanz | P. Kolb | P. Matricon | H. Gutiérrez‐de‐Terán | S. Filipek | G. Khelashvili | G. de Fabritiis | P. Miszta | R. Guixà-González | J. Selent | X. Deupí | M. Filizola | U. Zachariae | T. Giorgino | D. Provasi | Jens Carlsson | Gáspár Pándy-Szekeres | P. Hildebrand | W. Jespers | M. Marti-Solano | L. Pérez-Benito | Minos-Timotheos Matsoukas | M. Olivella | Ángel González | A. Cordomí | Silvana Vasile | Jon Kapla | Mireia Jiménez-Rosés | Tomek Stepniewski | Mariona Torrens-Fontanals | Ismael Rodríguez-Espigares | Alejandro Varela-Rial | Eduardo Mayol | Adrián Morales-Pastor | David Aranda-García | Brian Medel-Lacruz | J. Ramírez-Anguita | Jessica Sallander | Santiago Ríos | Iván R. Torrecillas | Agnieszka Sztyler | Dorota Latek | Nathalie Worp
[1] Chris de Graaf,et al. Generic GPCR residue numbers - aligning topology maps while minding the gaps. , 2015, Trends in pharmacological sciences.
[2] Ron O. Dror,et al. Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations , 2019, Cell.
[3] J. Ballesteros,et al. Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.
[4] Krzysztof Palczewski,et al. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway , 2014, Nature Communications.
[5] Joanna L. Sharman,et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..
[6] K Schulten,et al. VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.
[7] Diwakar Shukla,et al. Universality of the Sodium Ion Binding Mechanism in Class A G-Protein-Coupled Receptors. , 2018, Angewandte Chemie.
[8] Daniel Nietlispach,et al. The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. , 2019, Current opinion in structural biology.
[9] A. J. Venkatakrishnan,et al. Diverse GPCRs exhibit conserved water networks for stabilization and activation , 2019, Proceedings of the National Academy of Sciences.
[10] Shuguang Yuan,et al. The role of water and sodium ions in the activation of the μ-opioid receptor. , 2013, Angewandte Chemie.
[11] Vsevolod Katritch,et al. Harnessing Ion-Binding Sites for GPCR Pharmacology , 2019, Pharmacological Reviews.
[12] David E. Gloriam,et al. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. , 2016, Current opinion in pharmacology.
[13] Naomi R. Latorraca,et al. GPCR Dynamics: Structures in Motion. , 2017, Chemical reviews.
[14] Alexander S. Rose,et al. NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..
[15] Alexander S. Rose,et al. Bringing Molecular Dynamics Simulation Data into View. , 2019, Trends in biochemical sciences.
[16] Thomas J Lane,et al. MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.
[17] Tilman Flock,et al. An online resource for GPCR structure determination and analysis , 2019, Nature Methods.
[18] T. N. Bhat,et al. The Protein Data Bank , 2000, Nucleic Acids Res..
[19] Ferran Sanz,et al. Membrane cholesterol access into a G-protein-coupled receptor , 2017, Nature Communications.
[20] Johanna K. S. Tiemann,et al. HomolWat: a web server tool to incorporate ‘homologous’ water molecules into GPCR structures , 2020, Nucleic Acids Res..
[21] Erik Schultes,et al. The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.
[22] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[23] David Rodríguez,et al. The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. , 2013, Structure.
[24] David P. Anderson,et al. High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing , 2010, J. Chem. Inf. Model..
[25] Oliver P. Ernst,et al. A Ligand Channel through the G Protein Coupled Receptor Opsin , 2009, PloS one.
[26] Alexander S. Hauser,et al. GPCRdb in 2018: adding GPCR structure models and ligands , 2017, Nucleic Acids Res..
[27] A. J. Venkatakrishnan,et al. Uncovering patterns of atomic interactions in static and dynamic structures of proteins , 2019, bioRxiv.
[28] David E. Gloriam,et al. Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.
[29] R. Stevens,et al. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.
[30] Michael K. Gilson,et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..
[31] Antonín Pavelka,et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..
[32] David E. Gloriam,et al. Pharmacogenomics of GPCR Drug Targets , 2018, Cell.
[33] Ryan L. Collins,et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.
[34] Stephen R. Heller,et al. InChI, the IUPAC International Chemical Identifier , 2015, Journal of Cheminformatics.
[35] Peter Gölitz,et al. Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .
[36] R. Stevens,et al. Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. , 2008, Journal of molecular biology.
[37] Alexander S. Rose,et al. MDsrv: viewing and sharing molecular dynamics simulations on the web , 2017, Nature Methods.
[38] Arthur Christopoulos,et al. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein‐coupled receptors , 2017, British journal of pharmacology.
[39] Jonathan A. Javitch,et al. Single-molecule analysis of ligand efficacy in β2AR-G protein activation , 2017, Nature.
[40] Oliver Beckstein,et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations , 2016, SciPy.
[41] Mauricio Carrillo-Tripp,et al. HTMoL: full-stack solution for remote access, visualization, and analysis of molecular dynamics trajectory data , 2017, Journal of Computer-Aided Molecular Design.
[42] Andrew Tobin,et al. The European Research Network on Signal Transduction (ERNEST): Toward a Multidimensional Holistic Understanding of G Protein-Coupled Receptor Signaling. , 2020, ACS pharmacology & translational science.
[43] Gianni De Fabritiis,et al. Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors , 2010, PLoS Comput. Biol..