GPCRmd uncovers the dynamics of the 3D-GPCRome

G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd ( http://gpcrmd.org/ ), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations. GPCRmd is a community-driven online platform to visualize, analyze and share G-protein-coupled receptor (GPCR) molecular dynamics data. It currently contains simulation data representing 100% of GPCR classes, 71% of receptor subtypes and 80% of GPCR families.

Toni Giorgino | Davide Provasi | Gianni De Fabritiis | George Khelashvili | Marta Filizola | David E. Gloriam | Ferran Sanz | Jessica Sallander | Hugo Gutiérrez-de-Terán | Juan Manuel Ramírez-Anguita | Harel Weinstein | Johanna K. S. Tiemann | Peter W. Hildebrand | Mireia Jiménez-Rosés | Minos-Timotheos Matsoukas | Gáspár Pándy-Szekeres | Dorota Latek | Jens Carlsson | Ramon Guixà-González | Mariona Torrens-Fontanals | Tomasz Maciej Stepniewski | David Aranda-García | Adrián Morales-Pastor | Brian Medel-Lacruz | Jana Selent | Willem Jespers | Silvana Vasile | Alejandro Varela-Rial | Eduardo Mayol | Ismael Rodríguez-Espigares | Nathalie Worp | Xavier Deupi | Slawomir Filipek | José Carlos Gómez-Tamayo | Angel Gonzalez | Jon Kapla | Peter Kolb | Maria Marti-Solano | Pierre Matricon | Przemyslaw Miszta | Mireia Olivella | Laura Perez-Benito | Santiago Ríos | Iván R. Torrecillas | Agnieszka Sztyler | Ulrich Zachariae | David E. Gloriam | Arnau Cordomi | J. C. Gómez-Tamayo | H. Weinstein | F. Sanz | P. Kolb | P. Matricon | H. Gutiérrez‐de‐Terán | S. Filipek | G. Khelashvili | G. de Fabritiis | P. Miszta | R. Guixà-González | J. Selent | X. Deupí | M. Filizola | U. Zachariae | T. Giorgino | D. Provasi | Jens Carlsson | Gáspár Pándy-Szekeres | P. Hildebrand | W. Jespers | M. Marti-Solano | L. Pérez-Benito | Minos-Timotheos Matsoukas | M. Olivella | Ángel González | A. Cordomí | Silvana Vasile | Jon Kapla | Mireia Jiménez-Rosés | Tomek Stepniewski | Mariona Torrens-Fontanals | Ismael Rodríguez-Espigares | Alejandro Varela-Rial | Eduardo Mayol | Adrián Morales-Pastor | David Aranda-García | Brian Medel-Lacruz | J. Ramírez-Anguita | Jessica Sallander | Santiago Ríos | Iván R. Torrecillas | Agnieszka Sztyler | Dorota Latek | Nathalie Worp

[1]  Chris de Graaf,et al.  Generic GPCR residue numbers - aligning topology maps while minding the gaps. , 2015, Trends in pharmacological sciences.

[2]  Ron O. Dror,et al.  Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations , 2019, Cell.

[3]  J. Ballesteros,et al.  Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.

[4]  Krzysztof Palczewski,et al.  Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway , 2014, Nature Communications.

[5]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..

[6]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[7]  Diwakar Shukla,et al.  Universality of the Sodium Ion Binding Mechanism in Class A G-Protein-Coupled Receptors. , 2018, Angewandte Chemie.

[8]  Daniel Nietlispach,et al.  The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. , 2019, Current opinion in structural biology.

[9]  A. J. Venkatakrishnan,et al.  Diverse GPCRs exhibit conserved water networks for stabilization and activation , 2019, Proceedings of the National Academy of Sciences.

[10]  Shuguang Yuan,et al.  The role of water and sodium ions in the activation of the μ-opioid receptor. , 2013, Angewandte Chemie.

[11]  Vsevolod Katritch,et al.  Harnessing Ion-Binding Sites for GPCR Pharmacology , 2019, Pharmacological Reviews.

[12]  David E. Gloriam,et al.  Integrating structural and mutagenesis data to elucidate GPCR ligand binding. , 2016, Current opinion in pharmacology.

[13]  Naomi R. Latorraca,et al.  GPCR Dynamics: Structures in Motion. , 2017, Chemical reviews.

[14]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[15]  Alexander S. Rose,et al.  Bringing Molecular Dynamics Simulation Data into View. , 2019, Trends in biochemical sciences.

[16]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[17]  Tilman Flock,et al.  An online resource for GPCR structure determination and analysis , 2019, Nature Methods.

[18]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[19]  Ferran Sanz,et al.  Membrane cholesterol access into a G-protein-coupled receptor , 2017, Nature Communications.

[20]  Johanna K. S. Tiemann,et al.  HomolWat: a web server tool to incorporate ‘homologous’ water molecules into GPCR structures , 2020, Nucleic Acids Res..

[21]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[22]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[23]  David Rodríguez,et al.  The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. , 2013, Structure.

[24]  David P. Anderson,et al.  High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing , 2010, J. Chem. Inf. Model..

[25]  Oliver P. Ernst,et al.  A Ligand Channel through the G Protein Coupled Receptor Opsin , 2009, PloS one.

[26]  Alexander S. Hauser,et al.  GPCRdb in 2018: adding GPCR structure models and ligands , 2017, Nucleic Acids Res..

[27]  A. J. Venkatakrishnan,et al.  Uncovering patterns of atomic interactions in static and dynamic structures of proteins , 2019, bioRxiv.

[28]  David E. Gloriam,et al.  Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.

[29]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[30]  Michael K. Gilson,et al.  BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..

[31]  Antonín Pavelka,et al.  CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..

[32]  David E. Gloriam,et al.  Pharmacogenomics of GPCR Drug Targets , 2018, Cell.

[33]  Ryan L. Collins,et al.  Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.

[34]  Stephen R. Heller,et al.  InChI, the IUPAC International Chemical Identifier , 2015, Journal of Cheminformatics.

[35]  Peter Gölitz,et al.  Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .

[36]  R. Stevens,et al.  Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. , 2008, Journal of molecular biology.

[37]  Alexander S. Rose,et al.  MDsrv: viewing and sharing molecular dynamics simulations on the web , 2017, Nature Methods.

[38]  Arthur Christopoulos,et al.  THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein‐coupled receptors , 2017, British journal of pharmacology.

[39]  Jonathan A. Javitch,et al.  Single-molecule analysis of ligand efficacy in β2AR-G protein activation , 2017, Nature.

[40]  Oliver Beckstein,et al.  MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations , 2016, SciPy.

[41]  Mauricio Carrillo-Tripp,et al.  HTMoL: full-stack solution for remote access, visualization, and analysis of molecular dynamics trajectory data , 2017, Journal of Computer-Aided Molecular Design.

[42]  Andrew Tobin,et al.  The European Research Network on Signal Transduction (ERNEST): Toward a Multidimensional Holistic Understanding of G Protein-Coupled Receptor Signaling. , 2020, ACS pharmacology & translational science.

[43]  Gianni De Fabritiis,et al.  Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors , 2010, PLoS Comput. Biol..