Half-tapering strategy for conditional simulation with large datasets

Gaussian conditional realizations are routinely used for risk assessment and planning in a variety of Earth sciences applications. Assuming a Gaussian random field, conditional realizations can be obtained by first creating unconditional realizations that are then post-conditioned by kriging. Many efficient algorithms are available for the first step, so the bottleneck resides in the second step. Instead of doing the conditional simulations with the desired covariance (F approach) or with a tapered covariance (T approach), we propose to use the taper covariance only in the conditioning step (half-taper or HT approach). This enables to speed up the computations and to reduce memory requirements for the conditioning step but also to keep the right short scale variations in the realizations. A criterion based on mean square error of the simulation is derived to help anticipate the similarity of HT to F. Moreover, an index is used to predict the sparsity of the kriging matrix for the conditioning step. Some guides for the choice of the taper function are discussed. The distributions of a series of 1D, 2D and 3D scalar response functions are compared for F, T and HT approaches. The distributions obtained indicate a much better similarity to F with HT than with T.

[1]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .

[2]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[3]  T. Lu,et al.  Inverses of 2 × 2 block matrices , 2002 .

[4]  L. Teo,et al.  Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure , 2008, 0807.0022.

[5]  Jianhua Z. Huang,et al.  A full scale approximation of covariance functions for large spatial data sets , 2012 .

[6]  Denis Marcotte,et al.  Spatial turning bands simulation of anisotropic non-linear models of coregionalization with symmetric cross-covariances , 2016, Comput. Geosci..

[7]  Philippe Renard,et al.  Connectivity metrics for subsurface flow and transport , 2013 .

[8]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[9]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[10]  Denis Marcotte,et al.  TASC3D: A program to test the admissibility in 3D of non-linear models of coregionalization , 2015, Comput. Geosci..

[11]  Hao Zhang,et al.  Covariance Tapering in Spatial Statistics , 2007 .

[12]  Martin Berggren,et al.  Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.

[13]  Amilcar Soares,et al.  Stochastic environmental research risk assessment , 2007 .

[14]  Xavier Emery Statistical tests for validating geostatistical simulation algorithms , 2008, Comput. Geosci..

[15]  Emilio Porcu,et al.  Radial basis functions with compact support for multivariate geostatistics , 2013, Stochastic Environmental Research and Risk Assessment.

[16]  Michael L. Stein,et al.  A simple condition for asymptotic optimality of linear predictions of random fields , 1993 .

[17]  David K. Larue,et al.  Static characterizations of reservoirs: refining the concepts of connectivity and continuity , 2007, Petroleum Geoscience.

[18]  T. Gneiting Compactly Supported Correlation Functions , 2002 .

[19]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[20]  A. T. A. Wood,et al.  Simulation of stationary Gaussian vector fields , 1999, Stat. Comput..

[21]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[22]  X. Emery,et al.  An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields , 2016, Stochastic Environmental Research and Risk Assessment.

[23]  Christian Lantuéjoul,et al.  TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method , 2006, Comput. Geosci..

[24]  David Bolin,et al.  Spatially adaptive covariance tapering , 2015, 1506.03670.

[25]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[26]  David Bolin,et al.  A comparison between Markov approximations and other methods for large spatial data sets , 2013, Comput. Stat. Data Anal..

[27]  Ali M. Mosammam,et al.  Geostatistics: modeling spatial uncertainty, second edition , 2013 .

[28]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[29]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[30]  S. Bochner Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .

[31]  Xavier Emery,et al.  Comparing sequential Gaussian and turning bands algorithms for cosimulating grades in multi-element deposits , 2015 .

[32]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[33]  Reimund Schwarze,et al.  Efficient Approximation of the Spatial Covariance Function for Large Datasets - Analysis of Atmospheric CO2 Concentrations , 2013 .

[34]  Michael L. Stein,et al.  Statistical Properties of Covariance Tapers , 2013 .

[35]  M. Bevilacqua,et al.  Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics , 2016, The Annals of Statistics.

[36]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[37]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[38]  H. Bohman,et al.  Approximate fourier analysis of distribution functions , 1961 .

[39]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[40]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[41]  Xavier Emery,et al.  Testing the correctness of the sequential algorithm for simulating Gaussian random fields , 2004 .

[42]  Omid Asghari,et al.  Assessing the accuracy of sequential gaussian simulation through statistical testing , 2017, Stochastic Environmental Research and Risk Assessment.