Optimizing the preventive maintenance frequency with causal machine learning

[1]  Jente Van Belle,et al.  To do or not to do? Cost-sensitive causal classification with individual treatment effect estimates , 2022, Eur. J. Oper. Res..

[2]  Harsh Parikh,et al.  Validating Causal Inference Methods , 2022, ICML.

[3]  B. Baesens,et al.  Predict-then-optimize or predict-and-optimize? An empirical evaluation of cost-sensitive learning strategies , 2022, Inf. Sci..

[4]  Wentao Huang,et al.  Transfer learning method for rolling bearing fault diagnosis under different working conditions based on CycleGAN , 2021, Measurement Science and Technology.

[5]  Joerg Leukel,et al.  Adoption of machine learning technology for failure prediction in industrial maintenance: A systematic review , 2021, Journal of Manufacturing Systems.

[6]  Zhuang Ye,et al.  AKSNet: A novel convolutional neural network with adaptive kernel width and sparse regularization for machinery fault diagnosis , 2021 .

[7]  Gregoris Mentzas,et al.  A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications , 2021, Electronics.

[8]  Uri Shalit,et al.  Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding , 2021, ICML.

[9]  E. Droguett,et al.  Deep learning health state prognostics of physical assets in the Oil and Gas industry , 2020, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability.

[10]  Ian Goodfellow,et al.  Generative adversarial networks , 2020, Commun. ACM.

[11]  Philip A. Scarf,et al.  A review on maintenance optimization , 2020, Eur. J. Oper. Res..

[12]  Katrien Antonio,et al.  Pricing service maintenance contracts using predictive analytics , 2020, Eur. J. Oper. Res..

[13]  Savitha Ramasamy,et al.  Online RBM: Growing Restricted Boltzmann Machine on the fly for unsupervised representation , 2020, Appl. Soft Comput..

[14]  Y. Gal,et al.  Identifying Causal Effect Inference Failure with Uncertainty-Aware Models , 2020, NeurIPS.

[15]  Pier Francesco Orru,et al.  Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry , 2020, Sustainability.

[16]  Luís Romero,et al.  Deployment of a Smart and Predictive Maintenance System in an Industrial Case Study , 2020, 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE).

[17]  Konstantinos Gryllias,et al.  A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks , 2020 .

[18]  M. Schaar,et al.  Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks , 2020, NeurIPS.

[19]  Mihaela van der Schaar,et al.  Estimating Counterfactual Treatment Outcomes over Time Through Adversarially Balanced Representations , 2020, ICLR.

[20]  Aidong Zhang,et al.  A Survey on Causal Inference , 2020, ACM Trans. Knowl. Discov. Data.

[21]  Thyago P. Carvalho,et al.  A systematic literature review of machine learning methods applied to predictive maintenance , 2019, Comput. Ind. Eng..

[22]  Konstantinos Gryllias,et al.  Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine , 2019, Mechanical Systems and Signal Processing.

[23]  Kunru Chen,et al.  Predicting Air Compressor Failures Using Long Short Term Memory Networks , 2019, EPIA.

[24]  Kush R. Varshney,et al.  Characterization of Overlap in Observational Studies , 2019, AISTATS.

[25]  Mihaela van der Schaar,et al.  Validating Causal Inference Models via Influence Functions , 2019, ICML.

[26]  Alexander D'Amour,et al.  On Multi-Cause Approaches to Causal Inference with Unobserved Counfounding: Two Cautionary Failure Cases and A Promising Alternative , 2019, AISTATS.

[27]  Dimitris Bertsimas,et al.  Optimal Prescriptive Trees , 2019, INFORMS J. Optim..

[28]  Fazel Ansari,et al.  PriMa: a prescriptive maintenance model for cyber-physical production systems , 2019, Int. J. Comput. Integr. Manuf..

[29]  Stefan Bauer,et al.  Learning Counterfactual Representations for Estimating Individual Dose-Response Curves , 2019, AAAI.

[30]  Alexander D'Amour,et al.  Flexible Sensitivity Analysis for Observational Studies Without Observable Implications , 2018, Journal of the American Statistical Association.

[31]  Robert N. Boute,et al.  A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds , 2018, Eur. J. Oper. Res..

[32]  F. Dominici,et al.  ESTIMATING POPULATION AVERAGE CAUSAL EFFECTS IN THE PRESENCE OF NON-OVERLAP: THE EFFECT OF NATURAL GAS COMPRESSOR STATION EXPOSURE ON CANCER MORTALITY. , 2018, The annals of applied statistics.

[33]  Liping Sun,et al.  Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach , 2018 .

[34]  Mitra Fouladirad,et al.  Sensitivity of optimal replacement policies to lifetime parameter estimates , 2018, Eur. J. Oper. Res..

[35]  Tanir Ozcelebi,et al.  Predicting machine failures from industrial time series data , 2018, 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT).

[36]  Wouter Verbeke,et al.  A Literature Survey and Experimental Evaluation of the State-of-the-Art in Uplift Modeling: A Stepping Stone Toward the Development of Prescriptive Analytics , 2018, Big Data.

[37]  Adam N. Elmachtoub,et al.  Smart "Predict, then Optimize" , 2017, Manag. Sci..

[38]  Shih-Chieh Chang,et al.  DC-Prophet: Predicting Catastrophic Machine Failures in DataCenters , 2017, ECML/PKDD.

[39]  Min Xie,et al.  An Ameliorated Improvement Factor Model for Imperfect Maintenance and Its Goodness of Fit , 2017, Technometrics.

[40]  Stefan Wager,et al.  Policy Learning With Observational Data , 2017, Econometrica.

[41]  Hal R Varian,et al.  Causal inference in economics and marketing , 2016, Proceedings of the National Academy of Sciences.

[42]  Ricardo Silva,et al.  Observational-Interventional Priors for Dose-Response Learning , 2016, NIPS.

[43]  Enrico A. Colosimo,et al.  ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction , 2015, Reliab. Eng. Syst. Saf..

[44]  Shahrul Kamaruddin,et al.  Maintenance policy optimization—literature review and directions , 2015 .

[45]  Rajiv N. Rai,et al.  Imperfect repair modeling using Kijima type generalized renewal process , 2014, Reliab. Eng. Syst. Saf..

[46]  Dimitris Bertsimas,et al.  From Predictive to Prescriptive Analytics , 2014, Manag. Sci..

[47]  Zhigang Tian,et al.  Condition‐based Maintenance Optimization Using Neural Network‐based Health Condition Prediction , 2013, Qual. Reliab. Eng. Int..

[48]  Shahrul Kamaruddin,et al.  An overview of time-based and condition-based maintenance in industrial application , 2012, Comput. Ind. Eng..

[49]  Zhigang Tian,et al.  An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring , 2012, J. Intell. Manuf..

[50]  Hong-Zhong Huang,et al.  A Data-Driven Approach to Selecting Imperfect Maintenance Models , 2012, IEEE Transactions on Reliability.

[51]  Andrew K. S. Jardine,et al.  A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data , 2009, Reliab. Eng. Syst. Saf..

[52]  H. D. Webbink Causal Effects in Education , 2005 .

[53]  D. Rubin Causal Inference Using Potential Outcomes , 2005 .

[54]  Kosuke Imai,et al.  Causal Inference With General Treatment Regimes , 2004 .

[55]  D. Rubin Direct and Indirect Causal Effects via Potential Outcomes * , 2004 .

[56]  Stefanka Chukova,et al.  Warranty analysis: An approach to modeling imperfect repairs , 2004 .

[57]  Hongzhou Wang,et al.  A survey of maintenance policies of deteriorating systems , 2002, Eur. J. Oper. Res..

[58]  J. Robins,et al.  Marginal Structural Models to Estimate the Joint Causal Effect of Nonrandomized Treatments , 2001 .

[59]  L. Swanson Linking maintenance strategies to performance , 2001 .

[60]  James M. Robins,et al.  Association, Causation, And Marginal Structural Models , 1999, Synthese.

[61]  G. Imbens The Role of the Propensity Score in Estimating Dose-Response Functions , 1999 .

[62]  H. Pham,et al.  Invited reviewImperfect maintenance , 1996 .

[63]  C. W. Gits Design of maintenance concepts , 1992 .

[64]  M. Kijima Some results for repairable systems with general repair , 1989, Journal of Applied Probability.

[65]  P. Holland Statistics and Causal Inference , 1985 .

[66]  Henry W. Block,et al.  Age-dependent minimal repair , 1985, Journal of Applied Probability.

[67]  F. Proschan,et al.  Imperfect repair , 1983, Journal of Applied Probability.

[68]  Toshio Nakagawa,et al.  Imperfect Preventive-Maintenance , 1979, IEEE Transactions on Reliability.

[69]  Toshio Nakagawa,et al.  Optimum Policies When Preventive Maintenance is Imperfect , 1979, IEEE Transactions on Reliability.

[70]  Mazhar Ali Khan Malik,et al.  Reliable Preventive Maintenance Scheduling , 1979 .

[71]  D. Rubin Estimating causal effects of treatments in randomized and nonrandomized studies. , 1974 .

[72]  R. Barlow,et al.  Optimum Preventive Maintenance Policies , 1960 .

[73]  Jeroen Berrevoets,et al.  OrganITE: Optimal transplant donor organ offering using an individual treatment effect , 2020, NeurIPS.

[74]  Bernhard Haslhofer,et al.  PriMa-X: A reference model for realizing prescriptive maintenance and assessing its maturity enhanced by machine learning , 2018 .

[75]  Yisha Xiang,et al.  A review on condition-based maintenance optimization models for stochastically deteriorating system , 2017, Reliab. Eng. Syst. Saf..

[76]  Kurt Matyas,et al.  A procedural approach for realizing prescriptive maintenance planning in manufacturing industries , 2017 .

[77]  R. Teunter,et al.  Optimum maintenance strategy under uncertainty in the lifetime distribution , 2015, Reliab. Eng. Syst. Saf..

[78]  Benoît Iung,et al.  A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions , 2015, Reliab. Eng. Syst. Saf..

[79]  F. Sgarbossa,et al.  Industrial maintenance policy development: A quantitative framework , 2014 .

[80]  A. Kusiak,et al.  A Data-Mining Approach to Monitoring Wind Turbines , 2012, IEEE Transactions on Sustainable Energy.

[81]  Agusmian P. Ompusunggu,et al.  A practical approach to combine data mining and prognostics for improved predictive maintenance , 2009 .