Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Method for Discrimination between Molecular Types of Cryptococcus neoformans and Cryptococcus gattii

ABSTRACT We evaluated the usefulness of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for Cryptococcus identification at the species and subspecies levels by using an in-house database of 25 reference cryptococcal spectra. Eighty-one out of the 82 Cryptococcus isolates (72 Cryptococcus neoformans and 10 Cryptococcus gattii) tested were correctly identified with respect to their molecular type designations. We showed that MALDI-TOF MS is a practicable alternative to conventional mycology or DNA-based methods.

[1]  G. Fadda,et al.  Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[2]  B. Petrini,et al.  Cryptococcus gattii serotype‐C strains isolated in Bangalore, Karnataka, India , 2012, Mycoses.

[3]  Maurizio Sanguinetti,et al.  Direct MALDI-TOF Mass Spectrometry Assay of Blood Culture Broths for Rapid Identification of Candida Species Causing Bloodstream Infections: an Observational Study in Two Large Microbiology Laboratories , 2011, Journal of Clinical Microbiology.

[4]  V. Chaturvedi,et al.  Cryptococcus gattii: a resurgent fungal pathogen. , 2011, Trends in microbiology.

[5]  S. V. van Hal,et al.  Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra , 2011, PloS one.

[6]  L. Hoang,et al.  Rapid Identification of Cryptococcus neoformans and Cryptococcus gattii by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2011, Journal of Clinical Microbiology.

[7]  L. Hoang,et al.  Rapid Identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by Use of Rapid Biochemical Tests, Differential Media, and DNA Sequencing , 2011, Journal of Clinical Microbiology.

[8]  P. Murray,et al.  Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: usefulness for taxonomy and epidemiology. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[9]  A. Bizzini,et al.  Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[10]  Rebecca A Dagg,et al.  In Vitro Susceptibility of the Yeast Pathogen Cryptococcus to Fluconazole and Other Azoles Varies with Molecular Genotype , 2010, Journal of Clinical Microbiology.

[11]  P. Murray,et al.  Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Clinically Important Yeast Species , 2010, Journal of Clinical Microbiology.

[12]  D. Castelo-Branco,et al.  Molecular methods for the diagnosis and characterization of Cryptococcus: a review. , 2010, Canadian journal of microbiology.

[13]  J. Inácio,et al.  Differentiation of Cryptococcus neoformans varieties and Cryptococcus gattii using CAP59-based loop-mediated isothermal DNA amplification. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[14]  Joseph Heitman,et al.  Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States , 2010, PLoS pathogens.

[15]  T. Maier,et al.  Identification of Francisella tularensis by Whole-Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Fast, Reliable, Robust, and Cost-Effective Differentiation on Species and Subspecies Levels , 2010, Journal of Clinical Microbiology.

[16]  N. Lima,et al.  Filamentous fungal characterizations by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry , 2010, Journal of applied microbiology.

[17]  S. Lockhart,et al.  Correlation of Genotype and In Vitro Susceptibilities of Cryptococcus gattii Strains from the Pacific Northwest of the United States , 2009, Journal of Clinical Microbiology.

[18]  T. G. Mitchell,et al.  Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. , 2009, Medical mycology.

[19]  D. Stekel,et al.  The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation , 2009, Proceedings of the National Academy of Sciences.

[20]  J. Guarro,et al.  Use of mass spectrometry to identify clinical Fusarium isolates. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[21]  T. G. Mitchell,et al.  Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. , 2009, The Journal of infectious diseases.

[22]  M. Erhard,et al.  Rapid Classification and Identification of Salmonellae at the Species and Subspecies Levels by Whole-Cell Matrix-Assisted Laser Desorption Ionization – Time of Flight Mass Spectrometry † , 2008 .

[23]  D. Beezhold,et al.  Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. , 2008, Analytical biochemistry.

[24]  T. Boekhout,et al.  Diversity of the Cryptococcus neoformans-Cryptococcus gattii species complex. , 2008, Revista iberoamericana de micologia.

[25]  A. Hosoda,et al.  Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. , 2007, Analytical chemistry.

[26]  J. Albrethsen Reproducibility in protein profiling by MALDI-TOF mass spectrometry. , 2007, Clinical chemistry.

[27]  K. Kwon-Chung,et al.  Do major species concepts support one, two or more species within Cryptococcus neoformans? , 2006, FEMS yeast research.

[28]  K. Lemmer,et al.  Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. , 2006, FEMS yeast research.

[29]  T. G. Mitchell,et al.  Multilocus Sequence Typing Reveals Three Genetic Subpopulations of Cryptococcus neoformans var. grubii (Serotype A), Including a Unique Population in Botswana , 2006, Genetics.

[30]  T. Boekhout,et al.  Comparative analysis of the intergenic spacer regions and population structure of the species complex of the pathogenic yeast Cryptococcus neoformans. , 2005, FEMS yeast research.

[31]  T. Boekhout,et al.  A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Cogliati,et al.  Determination of Cryptococcus neoformans var. neoformans mating type by multiplex PCR. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[33]  W. Meyer,et al.  Molecular Typing of IberoAmerican Cryptococcus neoformans Isolates , 2003, Emerging infectious diseases.

[34]  W. Hop,et al.  Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. , 2001, Microbiology.

[35]  A. Casadevall,et al.  Cryptococcus neoformans var.grubii: Separate Varietal Status for Cryptococcus neoformans Serotype A Isolates , 1999, Journal of Clinical Microbiology.

[36]  G. Fadda,et al.  Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[37]  M. Robbins,et al.  Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. , 2010, Advances in applied microbiology.

[38]  M. Cogliati,et al.  Genotyping Cryptococcus neoformans var. neoformans with specific primers designed from PCR-fingerprinting bands sequenced using a modified PCR-based strategy. , 2000, Medical mycology.