A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery

Computational fluid–structure interaction (FSI) and flow analysis now have a significant role in design and performance evaluation of turbomachinery systems, such as wind turbines, fans, and turboc...

[1]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[2]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[3]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[4]  Pablo A. Kler,et al.  SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems , 2013 .

[5]  Yuri Bazilevs,et al.  Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis , 2017 .

[6]  Yuri Bazilevs,et al.  New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods , 2015 .

[7]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[8]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[9]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[10]  B. Launder,et al.  Development and application of a cubic eddy-viscosity model of turbulence , 1996 .

[11]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[12]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[13]  Paul M. Weaver,et al.  Review of morphing concepts and materials for wind turbine blade applications , 2013 .

[14]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[15]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[16]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[17]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[18]  Alessandro Corsini,et al.  Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique , 2012 .

[19]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[20]  Yuri Bazilevs,et al.  Isogeometric Modeling and Experimental Investigation of Moving-Domain Bridge Aerodynamics , 2019, Journal of Engineering Mechanics.

[21]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[22]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[23]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[24]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[25]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[26]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[27]  Alessandro Corsini,et al.  Fluid-Structure Interaction Study of Large and Light Axial Fan Blade , 2017 .

[28]  Tayfun E. Tezduyar,et al.  Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization , 2018, Computational Mechanics.

[29]  A. Korobenko,et al.  Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis , 2018, Archives of Computational Methods in Engineering.

[30]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[31]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[32]  Tayfun E. Tezduyar,et al.  New Directions in Space–Time Computational Methods , 2016 .

[33]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[34]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[35]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[36]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[37]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[38]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[39]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[40]  Tayfun E. Tezduyar,et al.  Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations , 2018 .

[41]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[42]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[43]  A. Korobenko,et al.  Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines , 2018 .

[44]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[45]  T. Hughes,et al.  Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interaction , 2018, Mathematical Models and Methods in Applied Sciences.

[46]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[47]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[48]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[49]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[50]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[51]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[52]  Michele Pinelli,et al.  A Shape Memory Alloy-Based Morphing Axial Fan Blade—Part I: Blade Structure Design and Functional Characterization , 2015 .

[53]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[54]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[55]  A. L. Marsden,et al.  Computation of residence time in the simulation of pulsatile ventricular assist devices , 2014 .

[56]  F. Scarpa,et al.  A Gradient Cellular Core for Aeroengine Fan Blades Based on Auxetic Configurations , 2011 .

[57]  Tayfun E. Tezduyar,et al.  Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation , 2018 .

[58]  Yuri Bazilevs,et al.  Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling , 2017, Comput. Math. Appl..

[59]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[60]  Tayfun E. Tezduyar,et al.  Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes , 2014 .

[61]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .

[62]  Alessandro Corsini,et al.  A variational multiscale method for particle-cloud tracking in turbomachinery flows , 2014 .

[63]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[64]  Yuri Bazilevs,et al.  Computational and experimental investigation of free vibration and flutter of bridge decks , 2018, Computational Mechanics.

[65]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[66]  Tayfun E. Tezduyar,et al.  Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity , 2017 .

[67]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[68]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[69]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[70]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[71]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[72]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[73]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[74]  Alessandro Corsini,et al.  Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations , 2012 .

[75]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[76]  Yuri Bazilevs,et al.  Fluid–Structure Interaction and Flows with Moving Boundaries and Interfaces , 2017 .

[77]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[78]  Tayfun E. Tezduyar,et al.  Aorta flow analysis and heart valve flow and structure analysis , 2018 .

[79]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[80]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[81]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[82]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[83]  Paul M. Weaver,et al.  Aerodynamic and aeroacoustic performance of airfoils with morphing structures , 2016 .

[84]  A. Korobenko,et al.  Computational free-surface fluid–structure interaction with application to floating offshore wind turbines , 2016 .

[85]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[86]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[87]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[88]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[89]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[90]  A. Korobenko,et al.  FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow , 2017 .

[91]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[92]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[93]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[94]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[95]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[96]  Tayfun E. Tezduyar,et al.  Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method , 2017 .

[97]  Tayfun E. Tezduyar,et al.  A General-Purpose NURBS Mesh Generation Method for Complex Geometries , 2018 .

[98]  Rakesh K. Kapania,et al.  Structural and Aeroelastic Modeling of General Planform Wings with Morphing Airfoils , 2002 .

[99]  Tayfun E. Tezduyar,et al.  Methods for computation of flow-driven string dynamics in a pump and residence time , 2019, Mathematical Models and Methods in Applied Sciences.

[100]  A. Korobenko,et al.  Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades , 2016 .

[101]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[102]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[103]  Farhan Gandhi,et al.  Design of Extendable Chord Sections for Morphing Helicopter Rotor Blades , 2011 .

[104]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[105]  Alessandro Corsini,et al.  A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms , 2009 .

[106]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[107]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[108]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[109]  Tayfun E. Tezduyar,et al.  A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta , 2016 .

[110]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[111]  Alessandro Corsini,et al.  Computational analysis of wind-turbine blade rain erosion , 2016 .

[112]  Yuri Bazilevs,et al.  Fluid–structure interaction simulation of pulsatile ventricular assist devices , 2013, Computational Mechanics.

[113]  Xiaowei Deng,et al.  Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines , 2017 .

[114]  T. Tezduyar,et al.  SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades , 2016 .

[115]  Tayfun E. Tezduyar,et al.  Heart Valve Flow Computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA) , 2018 .

[116]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[117]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[118]  A. Korobenko,et al.  ALE–VMS formulation for stratified turbulent incompressible flows with applications , 2015 .

[119]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[120]  Alessandro Corsini,et al.  Numerical study on the passive control of the aeroelastic response in large axial fans , 2016 .

[121]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[122]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[123]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[124]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[125]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[126]  Xiaowei Deng,et al.  Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines , 2014 .

[127]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[128]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[129]  Hitoshi Hattori,et al.  Computational analysis of flow-driven string dynamics in turbomachinery , 2017 .

[130]  Tayfun E. Tezduyar,et al.  Special methods for aerodynamic-moment calculations from parachute FSI modeling , 2015 .

[131]  Johannes Riemenschneider,et al.  Design and manufacturing of morphing fan blades for experimental investigations in a cascaded wind tunnel , 2015 .

[132]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[133]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[134]  Yuri Bazilevs,et al.  Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk , 2014 .