MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region.

[1]  Diana V. Dugas,et al.  MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs , 2004, Current Biology.

[2]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[3]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[4]  Franck Vazquez,et al.  The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. , 2004, Genes & development.

[5]  D. Xie,et al.  Viral Virulence Protein Suppresses RNA Silencing–Mediated Defense but Upregulates the Role of MicroRNA in Host Gene Expression , 2004, The Plant Cell Online.

[6]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[7]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[8]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[9]  R. Zhong,et al.  Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. , 2004, Plant & cell physiology.

[10]  John L. Bowman,et al.  Gene regulation: Ancient microRNA target sequences in plants , 2004, Nature.

[11]  Xuemei Chen,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004, Science.

[12]  Michelle T. Juarez,et al.  microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity , 2004, Nature.

[13]  C. Kidner,et al.  Spatially restricted microRNA directs leaf polarity through ARGONAUTE1 , 2004, Nature.

[14]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[15]  H. Vaucheret,et al.  The Nuclear dsRNA Binding Protein HYL1 Is Required for MicroRNA Accumulation and Plant Development, but Not Posttranscriptional Transgene Silencing , 2004, Current Biology.

[16]  N. Fedoroff,et al.  The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[18]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[19]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[20]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[21]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[22]  B. Ramratnam,et al.  Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA. , 2003, Nucleic acids research.

[23]  Anindya Dutta,et al.  Small RNAs with Imperfect Match to Endogenous mRNA Repress Translation , 2003, Journal of Biological Chemistry.

[24]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[25]  J. Bowman,et al.  Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes , 2003, Current Biology.

[26]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[27]  Javier F. Palatnik,et al.  Control of leaf morphogenesis by microRNAs , 2003, Nature.

[28]  T. Rana,et al.  siRNA function in RNAi: a chemical modification analysis. , 2003, RNA.

[29]  B. Cullen,et al.  MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Zamore,et al.  Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis , 2003, Aging cell.

[31]  Haibin Xia,et al.  Allele-specific silencing of dominant disease genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[33]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[34]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[35]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[36]  T. Berardini,et al.  HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis , 2003, Development.

[37]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[38]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[39]  Edwards Allen,et al.  P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. , 2003, Developmental cell.

[40]  Animesh Ray,et al.  DICER-LIKE1: blind men and elephants in Arabidopsis development. , 2002, Trends in plant science.

[41]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[42]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[43]  T. Rana,et al.  RNAi in human cells: basic structural and functional features of small interfering RNA. , 2002, Molecular cell.

[44]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[45]  W. Filipowicz Faculty Opinions recommendation of A microRNA in a multiple-turnover RNAi enzyme complex. , 2002 .

[46]  M. A. Rector,et al.  Endogenous and Silencing-Associated Small RNAs in Plants Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003210. , 2002, The Plant Cell Online.

[47]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[48]  Eric J Wagner,et al.  Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. , 2002, Molecular cell.

[49]  M. Amarzguioui,et al.  Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. , 2002, Nucleic acids research.

[50]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[51]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[52]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[53]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[54]  Martin Tabler,et al.  Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila , 2001, Current Biology.

[55]  J. Bowman,et al.  Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots , 2001, Nature.

[56]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[57]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[58]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[59]  D. Turner,et al.  Thermodynamics of single mismatches in RNA duplexes. , 1999, Biochemistry.

[60]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[61]  J. R. McConnell,et al.  Leaf polarity and meristem formation in Arabidopsis. , 1998, Development.

[62]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[63]  E. Seeberg,et al.  Spectrum of mutations induced by methyl and ethyl methanesulfonate at the hprt locus of normal and tag expressing Chinese hamster fibroblasts. , 1995, Carcinogenesis.

[64]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[65]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[66]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[67]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.