Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound.

[1]  Yi-Xian Qin,et al.  Prediction of trabecular bone principal structural orientation using quantitative ultrasound scanning. , 2012, Journal of biomechanics.

[2]  Kazuto Tanaka,et al.  Relationship Between Mechanical Properties and Acoustic Parameters Obtained from Fast and Slow Waves for Cancellous Bone , 2008 .

[3]  C. Rubin,et al.  ACOUSTICS2008/3388 Longitudinal assessment of human bone quality using scanning confocal quantitative ultrasound , 2008 .

[4]  P. Nicholson,et al.  Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae. , 2007, Clinical biomechanics.

[5]  Françoise Peyrin,et al.  Variation of Ultrasonic Parameters With Microstructure and Material Properties of Trabecular Bone: A 3D Model Simulation , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  Y.-X. Qin,et al.  Bone surface topology mapping and its role in trabecular bone quality assessment using scanning confocal ultrasound , 2007, Osteoporosis International.

[7]  Yi-Xian Qin,et al.  The effects of embedding material, loading rate and magnitude, and penetration depth in nanoindentation of trabecular bone. , 2006, Journal of biomedical materials research. Part A.

[8]  Juha Töyräs,et al.  Ultrasonic characterization of human trabecular bone microstructure , 2006, Physics in medicine and biology.

[9]  P. Laugier Quantitative ultrasound of bone: looking ahead. , 2006, Joint, bone, spine : revue du rhumatisme.

[10]  Wei Lin,et al.  The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound. , 2005, The Journal of the Acoustical Society of America.

[11]  O. Johnell,et al.  Potential Impact of Osteoporosis Treatment on Hip Fracture Trends , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  Yi-Xian Qin,et al.  Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. , 2005, Journal of biomechanics.

[13]  H. Genant,et al.  Cortical and Trabecular Bone Mineral Loss From the Spine and Hip in Long‐Duration Spaceflight , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[14]  J. Damilakis,et al.  Ultrasound Velocity Through the Cortex of Phalanges, Radius, and Tibia in Normal and Osteoporotic Postmenopausal Women Using a New Multisite Quantitative Ultrasound Device , 2003, Investigative radiology.

[15]  R. Eastell,et al.  Differential Effects of Primary Hyperparathyroidism on Ultrasound Properties of Bone , 2002, Osteoporosis International.

[16]  C. Rubin,et al.  Quantity and Quality of Trabecular Bone in the Femur Are Enhanced by a Strongly Anabolic, Noninvasive Mechanical Intervention , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[17]  H K Genant,et al.  Assessment of bone status using speed of sound at multiple anatomical sites. , 2001, Ultrasound in medicine & biology.

[18]  C. Rubin,et al.  Ultrasonic Wave Propagation in Trabecular Bone Predicted by the Stratified Model , 2001, Annals of Biomedical Engineering.

[19]  R Müller,et al.  Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography. , 2001, American journal of physical anthropology.

[20]  G. Blake,et al.  Quantitative Ultrasound and Bone Mineral Density Are Equally Strongly Associated with Risk Factors for Osteoporosis , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  A LeBlanc,et al.  Bone mineral and lean tissue loss after long duration space flight. , 2000, Journal of musculoskeletal & neuronal interactions.

[22]  S. Gonnelli,et al.  Quantitative Ultrasound and Bone Mineral Density in Patients with Primary Hyperparathyroidism Before and after Surgical Treatment , 2000, Osteoporosis International.

[23]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  B Bianco,et al.  Computational methods for ultrasonic bone assessment. , 1999, Ultrasound in medicine & biology.

[25]  A. Goode Musculoskeletal change during spaceflight: a new view of an old problem. , 1999, British journal of sports medicine.

[26]  C F Njeh,et al.  Acoustic and ultrasonic tissue characterization—assessment of osteoporosis , 1999, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[27]  H. Genant,et al.  Quantitative ultrasound in bone status assessment. , 1998, Revue du rhumatisme.

[28]  H. Genant,et al.  Current state of bone densitometry for osteoporosis. , 1998, Radiographics : a review publication of the Radiological Society of North America, Inc.

[29]  S. Minisola,et al.  Bone turnover and its relationship with bone mineral density in pre- and postmenopausal women with or without fractures. , 1998, Maturitas.

[30]  A. Wittich,et al.  Ultrasound Velocity of the Tibia in Patients on Hemodialysis , 1998 .

[31]  F. Tylavsky,et al.  Utility of Ultrasound to Assess Risk of Fracture , 1997, Journal of the American Geriatrics Society.

[32]  X. Marchandise,et al.  Evaluation of bone mineral density in patients with rheumatoid arthritis. Influence of disease activity and glucocorticoid therapy. , 1997, Revue du rhumatisme.

[33]  X. Marchandise,et al.  Contribution of calcaneal ultrasonic assessment to the evaluation of postmenopausal and glucocorticoid-induced osteoporosis. , 1997, Revue du rhumatisme.

[34]  A Odgaard,et al.  Three-dimensional methods for quantification of cancellous bone architecture. , 1997, Bone.

[35]  Harry K. Genant,et al.  Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. , 1997, Archives of internal medicine.

[36]  J Y Rho,et al.  The nonlinear transition period of broadband ultrasound attenuation as bone density varies. , 1996, Journal of biomechanics.

[37]  L. Melton,et al.  The worldwide problem of osteoporosis: insights afforded by epidemiology. , 1995, Bone.

[38]  E. Romagnoli,et al.  Quantitative ultrasound assessment of bone in patients with primary hyperparathyroidism , 1995, Calcified Tissue International.

[39]  P. Antich,et al.  A comparison of reflection and transmission ultrasonic techniques for measurement of cancellous bone elasticity. , 1994, Journal of biomechanics.

[40]  A. Leblanc,et al.  Can the adult skeleton recover lost bone? , 1991, Experimental Gerontology.

[41]  A. Leblanc,et al.  Bone mineral loss and recovery after 17 weeks of bed rest , 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[42]  P. Rambaut,et al.  SKELETAL CHANGES DURING SPACE FLIGHT , 1985, The Lancet.

[43]  V. Schneider,et al.  Long-term follow-up of Skylab bone demineralization. , 1980, Aviation, space, and environmental medicine.

[44]  R. Wright,et al.  DIAGNOSIS OF ALPHA1-ANTITRYPSIN DEFICIENCY , 1975, The Lancet.

[45]  A. Leblanc,et al.  Skeletal responses to space flight and the bed rest analog: a review. , 2007, Journal of musculoskeletal & neuronal interactions.

[46]  P. Rüegsegger,et al.  A microtomographic system for the nondestructive evaluation of bone architecture , 2006, Calcified Tissue International.

[47]  Ralph Müller,et al.  Trabecular bone failure at the microstructural level , 2006, Current osteoporosis reports.

[48]  Niklas Zethraeus,et al.  Intervention thresholds for osteoporosis in the UK. , 2005, Bone.

[49]  A. Kriska,et al.  The epidemiology of quantitative ultrasound: A review of the relationships with bone mass, osteoporosis and fracture risk , 2005, Osteoporosis International.

[50]  J. Medige,et al.  Ultrasound velocity and broadband attenuation over a wide range of bone mineral density , 2005, Osteoporosis International.

[51]  R. Strelitzki,et al.  The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material , 2005, Osteoporosis International.

[52]  J. Cheng,et al.  Correlations of calcaneal QUS with pQCT measurements at distal tibia and non-weight-bearing distal radius , 2004, Journal of Bone and Mineral Metabolism.

[53]  M. Bolanowski,et al.  Quantitative Ultrasound of the Heel and Some Parameters of Bone Turnover in Patients with Acromegaly , 2002, Osteoporosis International.

[54]  E. Orwoll,et al.  Does Bone Density Predict Fractures Comparably in Men and Women? , 2001, Osteoporosis International.

[55]  B. Elmann-Larsen,et al.  Quantitative Ultrasound Imaging of the Calcaneus: Precision and Variations During a 120-Day Bed Rest , 2000, Calcified Tissue International.

[56]  R. Strelitzki,et al.  On the Prediction of Young’s Modulus in Calcaneal Cancellous Bone by Ultrasonic Bulk and Bar Velocity Measurements , 1999, Clinical Rheumatology.

[57]  A. Feiveson,et al.  Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program , 1999 .

[58]  TOR Hildebrand,et al.  Quantification of Bone Microarchitecture with the Structure Model Index. , 1997, Computer methods in biomechanics and biomedical engineering.

[59]  J. Rho,et al.  Broadband ultrasound attenuation value dependence on bone width in vitro. , 1996, Physics in medicine and biology.

[60]  R T Whalen,et al.  Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. , 1992, Aviation, space, and environmental medicine.

[61]  R. B. Ashman,et al.  Elastic modulus of trabecular bone material. , 1988, Journal of biomechanics.

[62]  P. Rambaut,et al.  Space medicine: The skeleton in space , 1985, Nature.

[63]  W C Van Buskirk,et al.  A continuous wave technique for the measurement of the elastic properties of cortical bone. , 1984, Journal of biomechanics.