Gröbner Basis Construction Algorithms Based on Theorem Proving Saturation Loops

We present novel Gr"obner basis algorithms based on saturation loops used by modern superposition theorem provers. We illustrate the practical value of the algorithms through an experimental implementation within the Z3 SMT solver.

[1]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[2]  Harald Ganzinger,et al.  Buchberger's Algorithm: A Constraint-Based Completion Procedure , 1994, CCL.

[3]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[4]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[5]  Grant Olney Passmore,et al.  On locally minimal Nullstellensatz proofs , 2009, SMT '09.

[6]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[7]  Ashish Tiwari,et al.  An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints , 2005, CSL.

[8]  Robert Cori,et al.  Polynomial ideals for sandpiles and their Gröbner bases , 2002, Theor. Comput. Sci..

[9]  Bruno Buchberger,et al.  A critical-pair/completion algorithm for finitely generated ideals in rings , 1983, Logic and Machines.

[10]  Rekha R. Thomas Gröbner Bases in Integer Programming , 1998 .

[11]  Philipp Rümmer,et al.  Real World Verication , 2009 .

[12]  A. Ferscha,et al.  Reachability Test in Petri Nets by Grr Obner Bases Reachability Test in Petri Nets by Grr Obner Bases 1 , 2007 .

[13]  Bruno Buchberger,et al.  History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..

[14]  Matthias Fuchs,et al.  DISCOUNT: A SYstem for Distributed Equational Deduction , 1995, RTA.

[15]  Leis J.M,et al.  Proceedings of the Symposium , 1997 .

[16]  Nachum Dershowitz,et al.  Equational inference, canonical proofs, and proof orderings , 1994, JACM.

[17]  Enric Rodríguez-Carbonell,et al.  Automatic Generation of Polynomial Loop Invariants: Algebraic Foundations , 2004, ISSAC '04.

[18]  I. V. Ramakrishnan,et al.  Term Indexing , 1995, Lecture Notes in Computer Science.

[19]  Peter Graf Substitution Tree Indexing , 1995, RTA.

[20]  Andrei Voronkov,et al.  Limited resource strategy in resolution theorem proving , 2003, J. Symb. Comput..

[21]  Paul B. Jackson,et al.  Combined Decision Techniques for the Existential Theory of the Reals , 2009, Calculemus/MKM.

[22]  William McCune Otter 2.0 , 1990, CADE.

[23]  Leonardo Mendonça de Moura,et al.  Superfluous S-polynomials in Strategy-Independent Groebner Bases , 2009, 2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[24]  André Platzer,et al.  Real World Verification , 2009, CADE.