The Orlicz Weiss conjecture
暂无分享,去创建一个
[1] L. Peide,et al. Weak Orlicz spaces: Some basic properties and their applications to harmonic analysis , 2013 .
[2] B. Haak. Kontrolltheorie in Banachräumen und quadratische Abschätzungen , 2004 .
[3] George Weiss. Two conjectures on the admissibility of control operators , 1991 .
[4] Jonathan R. Partington,et al. ADMISSIBLE AND WEAKLY ADMISSIBLE OBSERVATION OPERATORS FOR THE RIGHT SHIFT SEMIGROUP , 2002, Proceedings of the Edinburgh Mathematical Society.
[5] G. Burton. Sobolev Spaces , 2013 .
[6] M. Fowler,et al. Function Spaces , 2022 .
[7] Markus Haase,et al. The Functional Calculus for Sectorial Operators , 2006 .
[8] Bounit Hamid,et al. A direct approach to the Weiss conjecture for bounded analytic semigroups , 2010 .
[9] Hans Zwart,et al. Counterexamples Concerning Observation Operators for C0-Semigroups , 2004, SIAM J. Control. Optim..
[10] Marius Tucsnak,et al. Well-posed systems - The LTI case and beyond , 2014, Autom..
[11] The Weiss conjecture and weak norms , 2012, 1206.5109.
[12] Jonathan R. Partington,et al. The Weiss conjecture on admissibility of observation operators for contraction semigroups , 2001 .
[13] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[14] S. Montgomery-Smith. Orlicz-Lorentz Spaces , 2011 .
[15] L. Maligranda,et al. On the interpolation constant for Orlicz spaces , 2001 .
[16] F. Smithies,et al. Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.
[17] Christian Le Merdy,et al. The Weiss Conjecture for Bounded Analytic Semigroups , 2003 .
[18] Jonathan R. Partington,et al. Admissibility of Control and Observation Operators for Semigroups: A Survey , 2004 .