The Orlicz Weiss conjecture

In this work we continue developments on the p-Weiss conjecture, which characterizes L-admissibility in terms of a resolvent condition for a special class of Orlicz spaces. This extends previous derived characterizations due to Le Merdy (p = 2) and Haak (p ≥ 1), under the assumption of bounded analytic semigroups.

[1]  L. Peide,et al.  Weak Orlicz spaces: Some basic properties and their applications to harmonic analysis , 2013 .

[2]  B. Haak Kontrolltheorie in Banachräumen und quadratische Abschätzungen , 2004 .

[3]  George Weiss Two conjectures on the admissibility of control operators , 1991 .

[4]  Jonathan R. Partington,et al.  ADMISSIBLE AND WEAKLY ADMISSIBLE OBSERVATION OPERATORS FOR THE RIGHT SHIFT SEMIGROUP , 2002, Proceedings of the Edinburgh Mathematical Society.

[5]  G. Burton Sobolev Spaces , 2013 .

[6]  M. Fowler,et al.  Function Spaces , 2022 .

[7]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[8]  Bounit Hamid,et al.  A direct approach to the Weiss conjecture for bounded analytic semigroups , 2010 .

[9]  Hans Zwart,et al.  Counterexamples Concerning Observation Operators for C0-Semigroups , 2004, SIAM J. Control. Optim..

[10]  Marius Tucsnak,et al.  Well-posed systems - The LTI case and beyond , 2014, Autom..

[11]  The Weiss conjecture and weak norms , 2012, 1206.5109.

[12]  Jonathan R. Partington,et al.  The Weiss conjecture on admissibility of observation operators for contraction semigroups , 2001 .

[13]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[14]  S. Montgomery-Smith Orlicz-Lorentz Spaces , 2011 .

[15]  L. Maligranda,et al.  On the interpolation constant for Orlicz spaces , 2001 .

[16]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[17]  Christian Le Merdy,et al.  The Weiss Conjecture for Bounded Analytic Semigroups , 2003 .

[18]  Jonathan R. Partington,et al.  Admissibility of Control and Observation Operators for Semigroups: A Survey , 2004 .