Complete description of the static level sets for the system of two particles under a Van der Waals potential
暂无分享,去创建一个
C. Barrón-Romero | A. Cueto-Hernández | F. Monroy-Pérez | F. Monroy-Pérez | C. Barrón-Romero | A. Cueto-Hernández
[1] Haiyan Jiang,et al. An Efficient Method Based on Lattice Construction and the Genetic Algorithm for Optimization of Large Lennard-Jones Clusters. , 2004, The journal of physical chemistry. A.
[2] Jean-Baptiste Caillau,et al. Geometric and Numerical Techniques in Optimal Control of Two and Three-Body Problems , 2010, Commun. Inf. Syst..
[3] A. Mielke. Finite Elastoplasticity Lie Groups and Geodesics on SL(d) , 2002 .
[4] The dissipation distance for a 2D single crystal with two symmetric slip systems , 2002, math/0207198.
[5] David Romero,et al. The optimal geometry of Lennard-Jones clusters: 148-309 , 1999 .
[6] M. Dahleh,et al. Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy , 1999 .
[7] Gene Ward Smith,et al. Some polynomials over Q(t) and their Galois groups , 1999, Math. Comput..
[8] Christodoulos A Floudas,et al. Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..
[9] J. Llibre,et al. Equilibrium Points and Central Configurations for the Lennard-Jones 2- and 3-Body Problems , 2004 .
[10] U. Landman,et al. Genetic Algorithms for Structural Cluster Optimization , 1998 .
[11] David Corwin. Galois Theory , 2009 .
[12] Fusion process of Lennard-Jones clusters: global minima and magic numbers formation , 2003, physics/0306185.