Effect of shear cutting on ductility of a dual phase steel

Both an experimental investigation with an especially designed setup and a mechanical FE analysis of the cutting process showed that for the laboratory dual phase steel investigated, cutting involves positive stress triaxiality and ductile fracture mainly due to void nucleation and coalescence at ferrite–martensite interfaces. Tensile tests on as-cut strip specimens showed a large reduction in ductility due to the presence of damage on the edges of the strips. Tensile tests on strip specimens containing short precracks and mechanical analysis showed that the cutting affected area behaves as a precrack during subsequent mechanical testing.

[1]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[2]  Jacques Besson,et al.  Simulation of the ductile tearing for two grades of 2024 aluminum alloy thin sheets , 2006 .

[3]  Jacques Besson,et al.  A yield function for anisotropic materials Application to aluminum alloys , 2004 .

[4]  R. Peerlings,et al.  Discrete crack modelling of ductile fracture driven by non‐local softening plasticity , 2006 .

[5]  Y. Liu,et al.  Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics , 1994 .

[6]  Jacques Besson,et al.  Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modelling , 2008 .

[7]  Ridha Hambli,et al.  Comparison between Lemaitre and Gurson damage models in crack growth simulation during blanking process , 2001 .

[8]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[9]  A. Atkins,et al.  On cropping and related processes , 1980 .

[10]  Viggo Tvergaard,et al.  Three dimensional analysis of dynamic ductile crack growth in a thin plate , 1996 .

[11]  Sang Wan Lee,et al.  Finite element simulation of the punchless piercing process with Lemaitre damage model , 2005 .

[12]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[13]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[14]  Stéphane Andrieux,et al.  Analysis of non-local models through energetic formulations , 2003 .

[15]  Jacques Besson,et al.  Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments , 2001 .

[16]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[17]  S. Andrieux,et al.  A variational formulation for nonlocal damage models , 1999 .

[18]  A. Pineau,et al.  Ductile rupture in thin sheets of two grades of 2024 aluminum alloy , 2004 .

[19]  Jacques Besson,et al.  Plastic potentials for anisotropic porous solids , 2001 .

[20]  Jacques Besson,et al.  Modeling of crack growth in round bars and plane strain specimens , 2001 .

[21]  Ridha Hambli,et al.  Finite element modeling of sheet-metal blanking operations with experimental verification , 2000 .

[22]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[23]  Tomasz Wierzbicki,et al.  On the cut-off value of negative triaxiality for fracture , 2005 .

[24]  Ridha Hambli,et al.  Finite element model fracture prediction during sheet-metal blanking processes , 2001 .

[25]  L. Xue Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading , 2007 .

[26]  Fpt Frank Baaijens,et al.  Numerical modelling of the metal blanking process , 1998 .

[27]  J. Besson,et al.  Fracture of 6056 aluminum sheet materials: effect of specimen thickness and hardening behavior on strain localization and toughness , 2005 .

[28]  Mohamed Rachik,et al.  Some phenomenological and computational aspects of sheet metal blanking simulation , 2002 .

[29]  R. H. Dodds,et al.  Ductile tearing in thin aluminum panels: experiments and analyses using large-displacement, 3-D surface cohesive elements , 2002 .

[30]  W. Brocks,et al.  Modeling of plane strain ductile rupture , 2003 .

[31]  Fpt Frank Baaijens,et al.  Predicting the shape of blanked products: a finite element approach , 2000 .

[32]  Thomas Pyttel,et al.  A finite element based model for the description of aluminium sheet blanking , 2000 .

[33]  Percy Williams Bridgman,et al.  Studies in large plastic flow and fracture , 1964 .

[34]  Jacques Besson,et al.  Modeling of scatter and size effect in ductile fracture: application to thermal embrittlement of duplex stainless steels , 2000 .

[35]  R. Hill The mathematical theory of plasticity , 1950 .

[36]  T. Siegmund,et al.  Prediction of the Work of Separation and Implications to Modeling , 1999 .

[37]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[38]  Jacques Besson,et al.  Ductile tearing of pipeline-steel wide plates: II. Modeling of in-plane crack propagation , 2001 .

[39]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[40]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[41]  T. Wierzbicki,et al.  Ductile fracture initiation and propagation modeling using damage plasticity theory , 2008 .

[42]  W. Brocks,et al.  Ductile rupture of aluminum sheet materials , 2001 .

[43]  Tomasz Wierzbicki,et al.  A tension zone model of blanking and tearing of ductile metal plates , 1996 .