Parallel Direction Method of Multipliers

We consider the problem of minimizing block-separable (non-smooth) convex functions subject to linear constraints. While the Alternating Direction Method of Multipliers (ADMM) for two-block linear constraints has been intensively studied both theoretically and empirically, in spite of some preliminary work, effective generalizations of ADMM to multiple blocks is still unclear. In this paper, we propose a parallel randomized block coordinate method named Parallel Direction Method of Multipliers (PDMM) to solve optimization problems with multi-block linear constraints. At each iteration, PDMM randomly updates some blocks in parallel, behaving like parallel randomized block coordinate descent. We establish the global convergence and the iteration complexity for PDMM with constant step size. We also show that PDMM can do randomized block coordinate descent on overlapping blocks. Experimental results show that PDMM performs better than state-of-the-arts methods in two applications, robust principal component analysis and overlapping group lasso.

[1]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[2]  P. Zhao,et al.  The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.

[3]  Julien Mairal,et al.  Convex optimization with sparsity-inducing norms , 2011 .

[4]  Xi Chen,et al.  Smoothing proximal gradient method for general structured sparse regression , 2010, The Annals of Applied Statistics.

[5]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[6]  Shiqian Ma,et al.  Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.

[7]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[8]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[9]  Shiqian Ma,et al.  Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers , 2013, ArXiv.

[10]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[11]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[12]  Arindam Banerjee,et al.  Bregman Alternating Direction Method of Multipliers , 2013, NIPS.

[13]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[14]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[15]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[16]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[17]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[18]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[19]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[20]  Michael I. Jordan Graphical Models , 2003 .

[21]  Alexander G. Gray,et al.  Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[22]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[23]  Peter Richtárik,et al.  Separable approximations and decomposition methods for the augmented Lagrangian , 2013, Optim. Methods Softw..

[24]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[25]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[26]  Arindam Banerjee,et al.  Online Alternating Direction Method , 2012, ICML.

[27]  Shiqian Ma,et al.  Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection , 2012, Neural Computation.

[28]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[29]  Arindam Banerjee,et al.  Online (cid:96) 1 -Dictionary Learning with Application to Novel Document Detection , 2012 .

[30]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[31]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[32]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[33]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[34]  Qiang Fu,et al.  Bethe-ADMM for Tree Decomposition based Parallel MAP Inference , 2013, UAI.

[35]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[36]  Taiji Suzuki,et al.  Stochastic Dual Coordinate Ascent with Alternating Direction Method of Multipliers , 2014, ICML.

[37]  Yaoliang Yu,et al.  Better Approximation and Faster Algorithm Using the Proximal Average , 2013, NIPS.

[38]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[39]  Allen Y. Yang,et al.  Fast L1-Minimization Algorithms For Robust Face Recognition , 2010 .

[40]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[41]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[42]  Taiji Suzuki,et al.  Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method , 2013, ICML.

[43]  Pradeep Ravikumar,et al.  Large Scale Distributed Sparse Precision Estimation , 2013, NIPS.

[44]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.