Toward an Alternative Comparison between Different Genetic Programming Systems

In this paper, we use multi-objective techniques to compare different genetic programming systems, permitting our comparison to concentrate on the effect of representation and separate out the effects of different search space sizes and search algorithms. Experimental results are given, comparing the performance and search behavior of Tree Adjoining Grammar Guided Genetic Programming (TAG3P) and Standard Genetic Programming (GP) on some standard problems.

[1]  Jason M. Daida,et al.  Challenges with Verification, Repeatability, and Meaningful Comparisons in Genetic Programming , 1997 .

[2]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[3]  Jason M. Daida,et al.  Challenges with Verification, Repeatability, and Meaningful Comparison in Genetic Programming: Gibson's Magic , 1999, GECCO.

[4]  Peter A. Whigham,et al.  Grammatical bias for evolutionary learning , 1996 .

[5]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[6]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[7]  Hitoshi Iba,et al.  Genetic Programming 1998: Proceedings of the Third Annual Conference , 1999, IEEE Trans. Evol. Comput..

[8]  Aravind K. Joshi,et al.  Tree Adjunct Grammars , 1975, J. Comput. Syst. Sci..

[9]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[10]  Nguyen Xuan Hoai,et al.  A Framework For Tree-Adjunct Grammar Guided Genetic Programming , 2001 .

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[13]  Nguyen Xuan Hoai,et al.  Solving the symbolic regression problem with tree-adjunct grammar guided genetic programming: the comparative results , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Martijn C. J. Bot Improving Induction of Linear Classification Trees with Genetic Programming , 2000, GECCO.

[15]  Hitoshi Iba,et al.  Genetic programming using a minimum description length principle , 1994 .

[16]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[17]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[18]  Sylvain Kahane,et al.  Can the TAG derivation tree represent a semantic graph? An answer in the light of Meaning-Text Theory , 1998, TAG+.

[19]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[20]  Hussein A. Abbass,et al.  Tree Adjoining Grammars, Language Bias, and Genetic Programming , 2003, EuroGP.

[21]  Lothar Thiele,et al.  Genetic Programming and Redundancy , 1994 .

[22]  John R. Koza,et al.  Genetic programming 1997 : proceedings of the Second Annual Conference, July 13-16, 1997, Stanford University , 1997 .

[23]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[24]  Sean Luke,et al.  A survey and comparison of tree generation algorithms , 2001 .

[25]  Conor Ryan,et al.  Grammatical Evolution , 2001, Genetic Programming Series.

[26]  Edwin D. de Jong,et al.  Multi-Objective Methods for Tree Size Control , 2003, Genetic Programming and Evolvable Machines.

[27]  Terence Soule,et al.  Effects of Code Growth and Parsimony Pressure on Populations in Genetic Programming , 1998, Evolutionary Computation.

[28]  Tobias Blickle,et al.  Evolving Compact Solutions in Genetic Programming: A Case Study , 1996, PPSN.

[29]  Aravind K. Joshi,et al.  Tree-Adjoining Grammars , 1997, Handbook of Formal Languages.

[30]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[31]  Anikó Ekárt,et al.  Selection Based on the Pareto Nondomination Criterion for Controlling Code Growth in Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[32]  Byoung-Tak Zhang,et al.  Balancing Accuracy and Parsimony in Genetic Programming , 1995, Evolutionary Computation.