Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications.

[1]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[2]  W. Prost,et al.  Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. , 2011, Nanotechnology.

[3]  E. Yablonovitch,et al.  Band bending, Fermi level pinning, and surface fixed charge on chemically prepared GaAs surfaces , 1989 .

[4]  C. Chang-Hasnain,et al.  Atomically sharp catalyst-free wurtzite GaAs /AlGaAs nanoneedles grown on silicon , 2008 .

[5]  J. Rivas,et al.  Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. , 2013, Nanoscale.

[6]  M. Guzzi,et al.  Electron-hole plasma in direct-gap Ga 1 − x Al x As and k -selection rule , 1984 .

[7]  Xiang Zhang,et al.  Multiplexed and electrically modulated plasmon laser circuit. , 2012, Nano letters.

[8]  K. Ploog,et al.  Effect of photoexcitation on the surface band bending in δ‐doped GaAs:Si/Al0.33Ga0.67As double heterostructures , 1992 .

[9]  Unpinned interface Fermi-level in Schottky contacts to n-GaAs capped with low-temperature-grown GaAs; experiments and modeling using defect state distributions , 2003 .

[10]  Pallab Bhattacharya,et al.  Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. , 2014, Nano letters.

[11]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015 .

[12]  Chang-Hee Cho,et al.  Silicon coupled with plasmon nanocavity generates bright visible hot-luminescence , 2013, Nature Photonics.

[13]  T. Xu,et al.  Band offsets at zincblende-wurtzite GaAs nanowire sidewall surfaces , 2013 .

[14]  E. Vogel,et al.  Comparison of n-type and p-type GaAs oxide growth and its effects on frequency dispersion characteristics , 2008 .

[15]  S. T. Picraux,et al.  Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes. , 2009, Physical review letters.

[16]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[17]  Shadi A. Dayeh,et al.  Advances in the synthesis of InAs and GaAs nanowires for electronic applications , 2009 .

[18]  Peter D. Kirchner,et al.  Unpinned (100) GaAs surfaces in air using photochemistry , 1986 .

[19]  K. Köhler,et al.  Auger recombination in intrinsic GaAs , 1993 .

[20]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[21]  A. Koma,et al.  Electronic surface states on clean and oxygen‐exposed GaAs surfaces , 1976 .

[22]  L. Allen,et al.  Amplified spontaneous emission I. The threshold condition , 1971 .

[23]  L. Jastrzebski,et al.  Application of scanning electron microscopy to determination of surface recombination velocity: GaAs , 1975 .

[24]  H. Jackson,et al.  Transient Rayleigh scattering: a new probe of picosecond carrier dynamics in a single semiconductor nanowire. , 2012, Nano letters.

[25]  Soo‐Ghang Ihn,et al.  Optical properties of undoped, Be-doped, and Si-doped wurtzite-rich GaAs nanowires grown on Si substrates by molecular beam epitaxy , 2010 .

[26]  S. Rubini,et al.  Photoluminescence of GaAs nanowires at an energy larger than the zincblende band-gap: dependence on growth parameters , 2015 .

[27]  T. Sigmon,et al.  Deep level transient spectroscopy study of GaAs surface states treated with inorganic sulfides , 1988 .

[28]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[29]  Pallab Bhattacharya,et al.  Room temperature ultralow threshold GaN nanowire polariton laser. , 2011, Physical review letters.

[30]  E. Lörtscher,et al.  Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress , 2014, Nature Communications.

[31]  X. Liu,et al.  Wavelength Tunable CdSe Nanowire Lasers Based on the Absorption‐Emission‐Absorption Process , 2013, Advanced materials.

[32]  D. Lang,et al.  Nonradiative capture and recombination by multiphonon emission in GaAs and GaP , 1977 .

[33]  H. Tan,et al.  Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. , 2014, Nano letters.

[34]  K. Hirose,et al.  Surface States for the GaAs(001) Surfaces Observed by Photoemission Yield Spectroscopy , 1991 .

[35]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[36]  C. Merckling,et al.  Polytypic InP nanolaser monolithically integrated on (001) silicon. , 2013, Nano letters.

[37]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[38]  X. Ren,et al.  Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers , 2014 .

[39]  A. Ougazzaden,et al.  Microfabrication and optical study of reactive ion etched InGaAsP/InP and GaAs/GaAlAs quantum wires , 1990 .

[40]  C. Henry Deep level spectroscopy, low temperature defect motion and nonradiative recombination in GaAs and GaP , 1975 .

[41]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[42]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[43]  L. Chernyak,et al.  Electrically pumped waveguide lasing from ZnO nanowires. , 2011, Nature nanotechnology.

[44]  B. Borg,et al.  Controlling the abruptness of axial heterojunctions in III-V nanowires: beyond the reservoir effect. , 2012, Nano letters.

[45]  Richard K. Ahrenkiel,et al.  Auger recombination in heavily carbon-doped GaAs , 2001 .

[46]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[47]  A. Forchel,et al.  Time resolved spectroscopy on etched GaAs/GaAlAs-quantum-microstructures , 1989 .

[48]  H. Jackson,et al.  Resonant excitation and imaging of nonequilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. , 2007, Nano letters (Print).

[49]  A. Fontcuberta i Morral,et al.  P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.

[50]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[51]  F. Pollak Contactless electromodulation investigations of surface/interface electric fields in semiconductor microstructures , 1993 .

[52]  H. Tan,et al.  An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes. , 2015, Nano letters.

[53]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[54]  C. Weisbuch,et al.  Radiative recombination in GaAs‐AlxGa1−xAs quantum dots , 1992 .

[55]  E. A. Kraut,et al.  Correlation of GaAs surface chemistry and interface Fermi‐level position: A single defect model interpretation , 1981 .

[56]  Z. Lu,et al.  Determination of band gap narrowing and hole density for heavily C‐doped GaAs by photoluminescence spectroscopy , 1994 .

[57]  W. Prost,et al.  Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. , 2012, Nano letters.

[58]  Hannah J Joyce,et al.  Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. , 2016, ACS nano.

[59]  Chennupati Jagadish,et al.  Influence of Electrical Design on Core–Shell GaAs Nanowire Array Solar Cells , 2015, IEEE Journal of Photovoltaics.

[60]  B. Fimland,et al.  A story told by a single nanowire: optical properties of wurtzite GaAs. , 2012, Nano letters.

[61]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[62]  C. Chang-Hasnain,et al.  Nanopillar lasers directly grown on silicon with heterostructure surface passivation. , 2014, ACS nano.

[63]  J. Woodall,et al.  Air stabilized (001) p‐type GaAs fabricated by molecular beam epitaxy with reduced surface state density , 1994 .

[64]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[65]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[66]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[67]  T. Ishibashi,et al.  Surface Recombination Velocity in p-Type GaAs , 1994 .

[68]  Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires. , 2014, Nano letters.

[69]  W. Prost,et al.  Recombination dynamics in single GaAs-nanowires with an axial heterojunction: n- versus p-doped areas , 2013 .

[70]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[71]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[72]  H. Tan,et al.  Mode Profiling of Semiconductor Nanowire Lasers. , 2015, Nano letters.

[73]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[74]  C. Nuese,et al.  Comparison of Zn‐doped GaAs layers prepared by liquid‐phase and vapor‐phase techniques, including diffusion lengths and photoluminescence , 1975 .

[75]  J. M. Worlock,et al.  Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs , 1989 .

[76]  P. H. Citrin,et al.  Chemical preparation of GaAs surfaces and their characterization by Auger electron and x‐ray photoemission spectroscopies , 1977 .

[77]  R. Conradt,et al.  Auger recombination in GaAs and GaSb , 1977 .

[78]  J. Woodall,et al.  Photoreflectance study of the surface Fermi level at (001) n‐ and p‐type GaAs surfaces , 1992 .

[79]  C. Jagadish,et al.  Twinning superlattice formation in GaAs nanowires. , 2013, ACS nano.

[80]  C. Sébenne,et al.  Intrinsic and Defect-Induced Surface States of Cleaved GaAs(110) , 1976 .

[81]  Constance J. Chang-Hasnain Nanolasers Grown on Silicon , 2012 .

[82]  Charles M Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2005, Nano letters.

[83]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[84]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[85]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[86]  Chennupati Jagadish,et al.  Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires , 2012 .

[87]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[88]  Stefan A. Maier,et al.  Ultrafast plasmonic nanowire lasers near the surface plasmon frequency , 2014, Nature Physics.

[89]  Milton Feng,et al.  Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation , 2011 .

[90]  Yasuhiko Arakawa,et al.  Low-Threshold near-Infrared GaAs–AlGaAs Core–Shell Nanowire Plasmon Laser , 2015 .

[91]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[92]  V. Dubrovskii,et al.  Zeldovich Nucleation Rate, Self-Consistency Renormalization, and Crystal Phase of Au-Catalyzed GaAs Nanowires , 2015 .

[93]  K. Dick,et al.  Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes , 2015, Nanotechnology.

[94]  Jenn-Shyong Hwang,et al.  Determination of surface state density for GaAs and InAlAs by room temperature photoreflectance , 1999 .