When Patrolmen Become Corrupted: Monitoring a Graph Using Faulty Mobile Robots

A team of k mobile robots is deployed on a weighted graph whose edge weights represent distances. The robots perpetually move along the domain, represented by all points belonging to the graph edges, not exceeding their maximal speed. The robots need to patrol the graph by regularly visiting all points of the domain. In this paper, we consider a team of robots (patrolmen), at most f of which may be unreliable, i.e. they fail to comply with their patrolling duties.

[1]  Xavier Défago,et al.  Fault-Tolerant and Self-stabilizing Mobile Robots Gathering , 2006, DISC.

[2]  Yehuda Elmaliach,et al.  A realistic model of frequency-based multi-robot polyline patrolling , 2008, AAMAS.

[3]  Akitoshi Kawamura,et al.  Fence patrolling by mobile agents with distinct speeds , 2014, Distributed Computing.

[4]  Jung-Heum Park,et al.  Dihamiltonian Decomposition of Regular Graphs with Degree Three , 1999, WG.

[5]  Alec Morton,et al.  Optimizing randomized patrols , 2009 .

[6]  Reuven Cohen,et al.  Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems , 2005, SIAM J. Comput..

[7]  Xavier Défago,et al.  Fault-tolerant flocking for a group of autonomous mobile robots , 2011, J. Syst. Softw..

[8]  Lynne E. Parker,et al.  Behavioral control for multi-robot perimeter patrol: A Finite State Automata approach , 2009, 2009 IEEE International Conference on Robotics and Automation.

[9]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[10]  Steve Alpern,et al.  Patrolling Games , 2011, Oper. Res..

[11]  Reuven Cohen,et al.  Convergence of Autonomous Mobile Robots with Inaccurate Sensors and Movements , 2008, SIAM J. Comput..

[12]  Xavier Défago,et al.  The Gathering Problem for Two Oblivious Robots with Unreliable Compasses , 2012, SIAM J. Comput..

[13]  Noa Agmon,et al.  Fault-tolerant gathering algorithms for autonomous mobile robots , 2004, SODA '04.

[14]  Andrzej Pelc,et al.  Gathering Despite Mischief , 2012, SODA.

[15]  Xavier Défago,et al.  Gathering Asynchronous Mobile Robots with Inaccurate Compasses , 2006, OPODIS.

[16]  Noam Hazon,et al.  On redundancy, efficiency, and robustness in coverage for multiple robots , 2008, Robotics Auton. Syst..

[17]  Sarit Kraus,et al.  Multi-robot perimeter patrol in adversarial settings , 2008, 2008 IEEE International Conference on Robotics and Automation.

[18]  Antonio Franchi,et al.  On optimal cooperative patrolling , 2010, 49th IEEE Conference on Decision and Control (CDC).

[19]  David Portugal,et al.  A Survey on Multi-robot Patrolling Algorithms , 2011, DoCEIS.

[20]  Alexis Drogoul,et al.  Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures , 2002, MABS.

[21]  Israel A. Wagner,et al.  A Distributed Ant Algorithm for\protect Efficiently Patrolling a Network , 2003, Algorithmica.

[22]  Csaba D. Tóth,et al.  On Fence Patrolling by Mobile Agents , 2013, CCCG.

[23]  Alfred M. Bruckstein,et al.  Autonomous Multi-agent Cycle Based Patrolling , 2010, ANTS Conference.

[24]  Nicola Basilico,et al.  Moving game theoretical patrolling strategies from theory to practice: An USARSim simulation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[25]  Jurek Czyzowicz,et al.  Boundary Patrolling by Mobile Agents with Distinct Maximal Speeds , 2011, ESA.

[26]  Noa Agmon,et al.  Multi-robot area patrol under frequency constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[27]  Lynne E. Parker,et al.  A fault-tolerant modular control approach to multi-robot perimeter patrol , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[28]  Yann Chevaleyre Theoretical analysis of the multi-agent patrolling problem , 2004 .