In-Situ Cnt-Loaded Organic Cathodes for Sulfide All-Solid-State Li Metal Batteries

[1]  Ziqiang Liu,et al.  Toluene Tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 Solid Electrolyte toward Ultrathin Membranes for All-Solid-State Lithium Batteries. , 2022, Nano letters.

[2]  Gaozhan Liu,et al.  Insights on Lithium Plating Behavior in Graphite-based All-solid-state Lithium-ion Batteries , 2022, Energy Storage Materials.

[3]  Liquan Chen,et al.  Water‐Stable Sulfide Solid Electrolyte Membranes Directly Applicable in All‐Solid‐State Batteries Enabled by Superhydrophobic Li+‐Conducting Protection Layer , 2021, Advanced Energy Materials.

[4]  Yan Yao,et al.  Microstructure engineering of solid-state composite cathode via solvent-assisted processing , 2021, Joule.

[5]  Lilu Liu,et al.  Superior All‐Solid‐State Batteries Enabled by a Gas‐Phase‐Synthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity , 2021, Advanced materials.

[6]  Liquan Chen,et al.  Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries , 2021, InfoMat.

[7]  D. Brandell,et al.  A perspective on organic electrode materials and technologies for next generation batteries , 2021 .

[8]  Yan Yao,et al.  High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes , 2020, ACS Energy Letters.

[9]  Chunsheng Wang,et al.  Lithium/Sulfide All‐Solid‐State Batteries using Sulfide Electrolytes , 2020, Advanced materials.

[10]  A. Cao,et al.  In Situ Coating Graphdiyne for High‐Energy‐Density and Stable Organic Cathodes , 2020, Advanced materials.

[11]  Yong Lu,et al.  Prospects of organic electrode materials for practical lithium batteries , 2020, Nature Reviews Chemistry.

[12]  Erik A. Wu,et al.  Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte , 2019, ACS Energy Letters.

[13]  Yan Yao,et al.  Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries , 2019, Joule.

[14]  M. Wilkening,et al.  Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. , 2019, Physical chemistry chemical physics : PCCP.

[15]  L. Nazar,et al.  Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity , 2018, ACS Energy Letters.

[16]  Yang Shen,et al.  High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[17]  M. Wagemaker,et al.  Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte , 2018, ACS applied materials & interfaces.

[18]  Yan Yao,et al.  Positioning Organic Electrode Materials in the Battery Landscape , 2018, Joule.

[19]  A. Hayashi,et al.  Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent , 2018, ACS Applied Energy Materials.

[20]  Xiao Ji,et al.  Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. , 2018, Angewandte Chemie.

[21]  Xiulin Fan,et al.  Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries , 2018, Advanced materials.

[22]  Sehee Lee,et al.  Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries. , 2018, Angewandte Chemie.

[23]  P. Poizot,et al.  A rechargeable lithium/quinone battery using a commercial polymer electrolyte , 2015 .

[24]  N. Machida,et al.  Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery , 2014 .

[25]  Jun Chen,et al.  Organic Li4C8H2O6 nanosheets for lithium-ion batteries. , 2013, Nano letters.

[26]  Hao Li,et al.  Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. , 2013, Angewandte Chemie.

[27]  Bruno Scrosati,et al.  A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte , 2013 .

[28]  Jun Chen,et al.  Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries , 2013 .

[29]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[30]  Itaru Honma,et al.  Rechargeable quasi-solid state lithium battery with organic crystalline cathode , 2012, Scientific Reports.

[31]  S. Adams,et al.  Studies of lithium argyrodite solid electrolytes for all‐solid‐state batteries , 2011 .

[32]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[33]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[34]  M. Shen,et al.  A Highly Stable Li‐Organic All‐Solid‐State Battery Based on Sulfide Electrolytes , 2022 .

[35]  Bruno Scrosati,et al.  All Solid-State Lithium–Sulfur Battery Using a Glass-Type P2S5–Li2S Electrolyte: Benefits on Anode Kinetics , 2015 .

[36]  I. Honma,et al.  Multielectron Redox Compounds for Organic Cathode Quasi-Solid State Lithium Battery , 2014 .