Rainbow Matchings in Properly-Colored Hypergraphs

A hypergraph $H$ is properly colored if for every vertex $v\in V(H)$, all the edges incident to $v$ have distinct colors. In this paper, we show that if $H_{1}$, \cdots, $H_{s}$ are properly-colored $k$-uniform hypergraphs on $n$ vertices, where $n\geq3k^{2}s$, and $e(H_{i})>{{n}\choose {k}}-{{n-s+1}\choose {k}}$, then there exists a rainbow matching of size $s$, containing one edge from each $H_i$. This generalizes some previous results on the Erd\H{o}s Matching Conjecture.

[1]  Hao Huang,et al.  The Size of a Hypergraph and its Matching Number , 2011, Combinatorics, Probability and Computing.

[2]  Peter Frankl,et al.  On the maximum number of edges in a hypergraph with given matching number , 2012, Discret. Appl. Math..

[3]  Peter Frankl,et al.  On Matchings in Hypergraphs , 2012, Electron. J. Comb..

[4]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[5]  D. E. Daykin,et al.  SETS OF INDEPENDENT EDGES OF A HYPERGRAPH , 1976 .

[6]  P. Frankl,et al.  The Erdős Matching Conjecture and concentration inequalities , 2022, J. Comb. Theory, Ser. B.

[7]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[8]  Peter Frankl,et al.  Erdös–Ko–Rado Theorem—22 Years Later , 1983 .

[9]  Vojtech Rödl,et al.  On the Maximum Number of Edges in a Triple System Not Containing a Disjoint Family of a Given Size , 2012, Combinatorics, Probability and Computing.

[10]  TOMASZ LUCZAK,et al.  On Erdős' extremal problem on matchings in hypergraphs , 2012, J. Comb. Theory, Ser. A.

[11]  Benny Sudakov,et al.  Rainbow Turán Problems , 2006, Combinatorics, Probability and Computing.

[12]  Peter Frankl,et al.  Improved bounds for Erdős' Matching Conjecture , 2013, J. Comb. Theory, Ser. A.

[13]  Peter Frankl,et al.  On the size of graphs with complete-factors , 1985, J. Graph Theory.

[14]  P. Erdos A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .