On Z2k-Dual Binary Codes

A new generalization of the Gray map is introduced. The new generalization Phi:Z2 kn rarr Z2 2k-1n is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z2 k-codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of Z2 k-linear Hadamard codes and co-Z2 k-linear extended 1-perfect codes are described, where co-Z2 k-linearity means that the code can be obtained from a linear Z2 k-code with the help of the new generalized Gray map

[1]  Kevin T. Phelps,et al.  On the additive ( Z 4-linear and non-Z 4-linear ) Hadamard codes . Rank and Kernel , 2005 .

[2]  Josep Rifà,et al.  A characterization of 1-perfect additive codes , 1999, IEEE Trans. Inf. Theory.

[3]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[4]  V. A. Zynovev Generalized concatenated code , 1976 .

[5]  Manish K. Gupta,et al.  On Linear Codes over $${\mathbb{Z}}_{2^{s}}$$ , 2005, Des. Codes Cryptogr..

[6]  A. A. Nechaev Trace function in Galois ring and noise stable codes (in Russian) , 1982 .

[7]  CarletC. Z2k-linear codes , 1998 .

[8]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[9]  Faina I. Solov'eva On the Construction of Transitive Codes , 2005, Probl. Inf. Transm..

[10]  Denis S. Krotov,et al.  I T ] 1 O ct 2 00 7 Z 4-Linear Perfect Codes * , 2008 .

[11]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[12]  Frédérique E. Oggier,et al.  Algebraic lattice constellations: bounds on performance , 2006, IEEE Transactions on Information Theory.

[13]  Claude Carlet Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.

[14]  Kevin T. Phelps,et al.  On binary 1-perfect additive codes: Some structural properties , 2002, IEEE Trans. Inf. Theory.

[15]  Jaume Pujol,et al.  Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.

[16]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[17]  Denis S. Krotov Z4-linear Hadamard and extended perfect codes , 2001, Electron. Notes Discret. Math..

[18]  Kevin T. Phelps,et al.  On the additive (/spl Zopf//sub 4/-linear and non-/spl Zopf//sub 4/-linear) Hadamard codes: rank and kernel , 2006, IEEE Transactions on Information Theory.

[19]  T. Honold,et al.  Weighted modules and representations of codes , 1998 .

[20]  A. K. Lal,et al.  On Linear Codes over Z 2 s , 2007 .

[21]  Kevin T. Phelps,et al.  The rank and kernel of extended 1-perfect Z4-linear and additive non-Z4-linear codes , 2003, IEEE Trans. Inf. Theory.