暂无分享,去创建一个
[1] Kevin T. Phelps,et al. On the additive ( Z 4-linear and non-Z 4-linear ) Hadamard codes . Rank and Kernel , 2005 .
[2] Josep Rifà,et al. A characterization of 1-perfect additive codes , 1999, IEEE Trans. Inf. Theory.
[3] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[4] V. A. Zynovev. Generalized concatenated code , 1976 .
[5] Manish K. Gupta,et al. On Linear Codes over $${\mathbb{Z}}_{2^{s}}$$ , 2005, Des. Codes Cryptogr..
[6] A. A. Nechaev. Trace function in Galois ring and noise stable codes (in Russian) , 1982 .
[7] CarletC.. Z2k-linear codes , 1998 .
[8] Rudolf Ahlswede,et al. On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..
[9] Faina I. Solov'eva. On the Construction of Transitive Codes , 2005, Probl. Inf. Transm..
[10] Denis S. Krotov,et al. I T ] 1 O ct 2 00 7 Z 4-Linear Perfect Codes * , 2008 .
[11] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[12] Frédérique E. Oggier,et al. Algebraic lattice constellations: bounds on performance , 2006, IEEE Transactions on Information Theory.
[13] Claude Carlet. Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.
[14] Kevin T. Phelps,et al. On binary 1-perfect additive codes: Some structural properties , 2002, IEEE Trans. Inf. Theory.
[15] Jaume Pujol,et al. Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.
[16] A. Nechaev,et al. Kerdock code in a cyclic form , 1989 .
[17] Denis S. Krotov. Z4-linear Hadamard and extended perfect codes , 2001, Electron. Notes Discret. Math..
[18] Kevin T. Phelps,et al. On the additive (/spl Zopf//sub 4/-linear and non-/spl Zopf//sub 4/-linear) Hadamard codes: rank and kernel , 2006, IEEE Transactions on Information Theory.
[19] T. Honold,et al. Weighted modules and representations of codes , 1998 .
[20] A. K. Lal,et al. On Linear Codes over Z 2 s , 2007 .
[21] Kevin T. Phelps,et al. The rank and kernel of extended 1-perfect Z4-linear and additive non-Z4-linear codes , 2003, IEEE Trans. Inf. Theory.